Supplemental Material to: Sparse high-degree polynomials for wide-angle lenses

Emanuel Schrade, Johannes Hanika and Carsten Dachsbacher
Karlsruhe Institute of Technology, Germany.

On the following pages we compare our polynomial fit to ray traced ground truth for other lenses than the ones shown in the paper. For each of the lenses we tested, there is a drawing of the lens system with ray traced rays (grey) and the evaluated polynomial (coloured). Ideally these two should match on both the aperture and the outer pupil. Another plot shows the Fresnel transmittance for both ray traced rays and the fitted polynomial on the outer pupil for each lens.
canon zoom
double gauss 1930
double gauss angenieux
lenses/double-gauss-angenieux.fx
double gauss
fisheye aspherical
fisheye ii
fisheye
kreitzer tele
lensbaby
petzval
simple ii
tessar anamorphic ii
tessar anamorphic
lenses/tessar-anamorphic.fx
ray traced
polynomial
wideangle 1971
wideangle ii