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Abstract—The analysis of measurement uncertainty is neces-
sary in every measurement process. In this paper, we suggest
an approach to categorize and model the dominant sources
of uncertainty and study the probabilistic propagation of the
uncertainties in a 3D inspection using laser line scanners. To each
point of the measurement point cloud, we associate a covariance
matrix describing the corresponding dispersion ellipsoid in the
3D space. The uncertainties can be analyzed for each desired laser
and camera constellation and thus, the method can be applied in
designing and optimizing laser scanner setups, reducing the effort
of manually evaluating the setup in a trial and error approach.
As a demonstration, the inspection of a cylinder head has been
simulated using computer graphics and the estimated uncertainty
metrics are visualized on the measured surface.

I. INTRODUCTION

Automatic product inspection is a growing requirement of
today’s manufacturing processes. An inspection is typically
aimed at verifying a number of specifications to be within
the allowed tolerances. Depending on the type of the prod-
uct, surface properties and the allowed tolerances, different
inspection methods can be applied. Common methods are
typically optical or based on touch-trigger probes. Touch-
trigger probes mounted on coordinate measuring machines
(CMMs) provide high fidelity measurements with well-studied
performance characteristics [1], but achieve much lower scan
rates compared to optical sensors. On the other hand, optical
methods are capable of fast contactless scanning of dense point
clouds [2], but their performance can be affected by many
environmental factors such as surface properties, illumination
and sensor calibration quality, which play the role of uncer-
tainty sources that propagate to the final measurement [3].
This resulting uncertainty directly limits the applicability of
the inspection method, since one cannot inspect a surface when
the tolerances are tighter than the measurement uncertainty.

To automate and improve the inspection process, sensor
planning methods have been developed to optimize the scan
view-points. The measurement uncertainty is an important
factor to be optimized during the planning, alongside other
goals such as complete target coverage. To this end, one
needs a model describing how the uncertainty changes as
the sensor view-point varies. Previous approaches typically
rely on empirical models obtained by experimentally changing
the sensor distance and orientation [4], [5]. These uncertainty

models are device dependent and only take a few parameters
into account. Our focus is primarily to incorporate and model
the most influencing sources of uncertainty to address the
differences between devices, reduce the experimental work,
and develop an analytic method for propagating the modeled
uncertainties to the output measurement.

In this paper, we propose an uncertainty propagation frame-
work for 3D shape measurement using laser line scanners,
which are widely used optical inspection tools based on the
principle of triangulation [6]. We categorize and model the
effect of dominant sources of uncertainty on the measure-
ment by suitable random variables, propose simple practical
methods to asses their statistics in a real setup, and present a
mathematical method to propagate the respective errors. The
resulting calculated uncertainty is represented in terms of a
3 × 3 covariance matrix corresponding to a 3D ellipsoidal
dispersion for each measured 3D point. This is particularly
useful for designing and optimizing laser triangulation setups.
In addition, the individual contribution of each source of
uncertainty can be addressed, which provides us with an
insight to recognize the dominating factors.

This paper is organized as follows: Upon reviewing the
previous work in the next section, we give an overview of
the model and methodology of the measurement using laser
scanners in Section III. In sections IV,V and VI, we cover the
statistical modeling and propagation of the dominant sources
of uncertainty. Section VII presents the application of the
method to a cylinder head inspection and demonstrates the
results. Throughout the paper, bold lowercase letters denote
vectors and uppercase letters correspond to matrices.

II. PREVIOUS WORK

In a number of previous works the uncertainty estimation
is done in the calibration step by analyzing the uncertainty of
reference point detection on the calibration object [3]. These
uncertainties are then propagated to the 3D reconstruction or
further, to the calculation of product properties such as width
and flatness [7]. These methods are only based on the reference
object and therefore do not account for the uncertainty induced
by the surface properties of the inspected object.

Some authors have used experimental methods to model
the systematic errors pertinent to the laser scanners in terms



of some geometrical setup parameters [2], [8]. In this paper,
we intend to analyze the measurement uncertainties even when
a systematic bias is not present or has been corrected.

Some works concern the uncertainty models for the purpose
of sensor planning. Although the view-planning problem has a
rich literature, the majority of works aim at optimizing the vis-
ibility constraints such as the optimum surface coverage with
a minimal number of acquisitions. A few works use simple but
different uncertainty models obtained experimentally, taking a
few geometrical parameters into account [4], [5], [9]. Prieto et
al. [5] suggest a model depending quadratically on the distance
and exponentially on the orientation angles of the sensor. The
model proposed by Scott [9] also grows quadratically with the
distance but has an inverse cosine relation with the incident
angle. The uncertainty model proposed by Mahmud et al. [4]
depends only on the laser beam incidence angle. These models
are empirically fitted by extensive experiments using a few
pre-selected parameters. The considerable differences in the
results also indicate that the models are device-dependent and
therefore, the experiments should be repeated for every device.

One of our contributions to the previous works is to
address the differences between devices, environments, and
target surfaces by modeling the sensor and the dominant
sources of uncertainty. The experimental work would then
be reduced to only estimating the statistics of the random
variables used in our uncertainty modeling, as we discuss in
Section V. Analytically propagating the uncertainties leads to
a mathematical function which can be used to evaluate the
measurement uncertainty for different sensor configurations
and can be applied to different sensor design and planning
applications.

III. MEASUREMENT MODEL AND METHODOLOGY

Figure 1 illustrates the geometry of a laser scanner. The
emitted laser plane creates an intersection curve on the object
surface and a camera records images (similar to Fig. 2) as
the object is moved along the x-axis. On the captured image,
the peak intensities at the lateral center of the illuminated
profile are extracted and processed to obtain a 3D point cloud
of the object. In the rest of this section, we go through the
mathematical derivation of the 3D point measurements.

We have modeled the camera with the well-known pin-hole
camera model [10]. As shown in Eq. 1, this model defines the
relation between the world coordinates of a measurement point
(xw, yw, zw) and the 2D coordinates (xp, yp) of its projection
on the image plane.
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The projection matrix of a camera in this model is ob-
tained by the multiplication of the matrix K3×3, containing
the intrinsic calibration parameters (fx, fy, s, cx, cy), and the
matrix P 3×4, built by the concatenation of a 3D rotation
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Fig. 1: Geometry of a laser scanner. oc is the origin of the camera
coordinate frame spanned by the vectors u, r and v. Angles τ and
θl are referred to as triangulation and opening angle, respectively. dc
denotes the scan distance and θc is the angle between the camera
axis and the horizon.

matrix R, and a translation vector t. In this equation, R and
t determine the relative transformation of world to camera
coordinate frame and λ is a scale factor. For simplicity, the
skew parameter s is often considered to be zero.

The laser fan is typically produced by spreading the light
of a laser beam through special lenses. This illuminated space
can be modeled as part of a 3D plane in space using xTn = d,
where n is the plane normal vector, x is a world 3D point and
d is a scalar.

The 3D coordinates of a 2D detected point on the image,
fulfill both the laser plane equation as well as the camera
projection model. Therefore, one can build a system of linear
equations (Eq. 2) by adding the laser plane equation to the
two independent linear equations obtained from Eq. 1 and
recover the 3D coordinates (also known as triangulation [6]).
Vectors rT,uT, and vT in Eq. 2 are the row vectors of the
camera rotation matrix as depicted in Fig. 1, or equivalently
RT = [r u v], and ti refers to an element of the translation
vector t = [t1 t2 t3]T.
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To keep the notation concise, the expression Ax = b is used
to refer to Eq. 2. Thus, to obtain the 3D measurement point
x, one can build the matrix A and vector b corresponding to
the sensor geometry parameters and the 2D interest point (xp,
yp), and then compute

x = A−1b. (3)

IV. MEASUREMENT UNCERTAINTY

Due to the inevitable presence of uncertainties, every
measurement is considered a random process. To make a
metrological statement, one has to characterize the statistics of
this randomness. According to the ’Guide to the Expression
of Uncertainty in Measurement (GUM)’ [11], methodologies
for the uncertainty evaluation can be either based on the



Fig. 2: Illuminating the target surface with a laser line

calculation of the statistics of repeated measurements (type
A), or they are based on using the available information to
propagate the uncertainties through the measurement (type B).
Consequently, the method proposed in this paper is of type B.

The crucial requirement of the uncertainty propagation is the
correct recognition and estimation of the uncertainty sources.
However, since the sources can be numerous, it is tedious or
even impossible to model every single factor. To simplify the
modeling, we categorize the dominant sources of uncertainty
into 3 main groups and model the induced perturbation of the
measurement parameters caused by each group. Every source
of uncertainty, regardless of its properties, can eventually
influence the resulting measurement by perturbing some of
the parameters in Eq. 2. With all the sources of uncertainty
taken into account, the error-free form of Eq. 3 is replaced by
the perturbed form

(x + δx) = (A+ δA)−1(b + δb). (4)

Consequently, the first step is the modeling and estimation
of input uncertainties δA and δb, which we discuss in the next
section. Later in Section VI, the derivation of the resulting
measurement uncertainty δx will be studied.

V. UNCERTAINTY MODELING

In this section, we group the input parameters based on
the part of the measurement they influence. The uncertainties
induced on each group are statistically modeled by random
variables. Further, we propose methods on how to estimate the
statistics of the random variables in a real setup. This section is
based on the assumption that the dominant uncertainty factors
in a setup can be covered in the following categories and the
effect of the other minor factors, such as temperature change,
are negligible. Table I contains a summary of the uncertainty
model parameters discussed in this section.

A. Laser Detection Uncertainty

First we consider the inaccuracies in the determination of
the 2D coordinates of the detected laser line {xp, yp} in the
pixel domain. The typical approach is to localize the peak
intensity in each column of the image using methods such
as center of gravity or Gaussian approximation [12]. Many
factors, such as the surface reflectance function and roughness
(which leads to speckle noise), as well as the sensor noise,
sampling, quantization effects, and the interpolation method
can lead to uncertainties in the detection. The perturbed values
are modeled by {xp + exp , yp + eyp}, where exp and eyp are
assumed to be zero-mean Gaussian random variables.

A practical method to estimate the statistics (covariance
matrix) of exp and eyp is to illuminate a flat piece of the target
surface by the laser to ensure that the laser forms a straight line
(see Fig. 2). Then, an experimental image acquisition needs
to be performed from a few different distances and viewing
angles. Further, the peak intensity in each column will be
interpolated. The uncertainties can be estimated based on the
deviations of the detected peak location from the fitted line
in each captured image. A conservative approach is to choose
the maximum obtained deviation; however, one can build a
more exact uncertainty model based on the sensor distance
and orientation, which we leave as a future work.

B. Positioning Uncertainty

In cases where robots or other positioning devices are
used to position the sensor, the uncertainty in the geometrical
positioning must also be taken into account. The placement
and angular uncertainties of positioning systems are usually
reported by the manufacturer or they need to be estimated
by experiment. In this section we study the incorporation of
these uncertainties in positioning models to correctly analyze
their effects. To the best of our knowledge, the work proposed
by Scott [9] is the only work which has incorporated a pose
uncertainty model in the planning; however, the propagation
of the uncertainties to the output 3D measurement is not
explicitly derived.

To allow a high degree of freedom in the view-planning,
the laser and the camera are considered to be independently
positioned and thus, they have their respective models.

1) Camera: As depicted in Fig. 3a, positioning uncertain-
ties can lead to a transformation of the camera coordinate
frame by a vector eo and some rotation matrix Re. eo is
modeled by three independent zero-mean Gaussians for each
direction (eox , eoy , eoz ). The rotation matrix Re has three
degrees of freedom which must be parameterized according
to the degrees of freedom of the positioning system. We
have used the Euler angles to model the rotation with three
independent random variables eα, eβ and eγ , which denote
an uncertainty in pitch, roll and yaw angles, respectively. The
noisy rotation angles are assumed to be zero-mean Gaussians,
as well. Nevertheless, for each setup the parametrization
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Fig. 3: Placement uncertainty models for camera coordinate
frame (a) and laser plane (b).



TABLE I: Summary of uncertainty modeling for a laser line scanner

Group Parameter Error-Free Form Perturbed Form Random Variables
Laser detection uncertainty horizontal xp xp + exp exp
in pixel domain vertical yp yp + eyp eyp

camera rotation R ReR eα, eβ , eγ

Positioning uncertainty camera position t Reeo + t eox , eoy , eoz
laser position d d+ ed ed

laser normal n see Sec. V-B2 eθ, eφ

Camera intrinsic uncertainty focal length fx,fy fx + efx , fy + efy efx ,efy
projection center cx,cy cx + ecx , cy + ecy ecx ,ecy

must be replaced by the suitable representation, that correctly
describes the independent angles of the positioning system.

If the angular errors are small enough, one can make a linear
approximation in the Euler rotation formula by approximating
sin(a) ≈ a and cos(a) ≈ 1 and ignoring the second
and higher order multiplications of the angles. Holding this
assumption, the approximated Re can be represented by

Re =


1 eγ −eα
−eγ 1 eβ

eα −eβ 1

 . (5)

By applying the uncertainty model, the former error-free
parameter set {R, t} in Eq. 2 will be replaced by the per-
turbed values {ReR,Reeo + t}, according to the method of
combining two rigid transformations [10].

2) Laser: As shown in Fig. 3b, the laser positioning un-
certainties can either deviate the normal direction, or cause a
movement of the plane. Although there are three degrees of
freedom for the movement, only the component parallel to the
normal vector is taken into account (e.i, ed), since the other
directions cause no changes in the geometrical equation of
the plane. We also assume that the laser fan width is large
enough compared to the object size, so as to cause negligible
uncertainties by movement in other directions. Therefore, the
parameter d in Eq. 2 will by perturbed by d+ ed, where ed is
modeled by a zero-mean Gaussian random variable.

Deviations of the normal direction are modeled by a cone
parameterized by two independent random variables eθ and
eφ. The variable eθ is modeled by a zero-mean Gaussian
whose standard deviation defines the cone half-angle. Given
eθ, the normal vector can equiprobably point to anywhere on
the perimeter of the cone base. This is modeled by a uniform
variable eφ on the interval [−π ,π ]. Although eφ has a high
variance of π2

3 , as we later see in Section VI, it does not effect
the measurement uncertainty. The deviations of the normal
vector is therefore governed by eθ.

Using this model, the perturbed normal vector will have the
form [sin(eθ) cos(eφ), sin(eθ) sin(eφ), cos(eθ)]

T. This vector
is defined in the coordinate frame built by the vectors ntx, nty,
and n. To obtain the perturbed normal in the reference frame,
it needs to be multiplied by the rotation matrix [ntx,nty,n].

The Gaussian random variables introduced in this section
are assumed to be independent. They represent either an

angular or a positioning uncertainty. A practical way to es-
timate their standard deviations is to use the positioning and
angular repeatability (equivalent of a type A uncertainty) of
the manipulators used to position the laser and the camera.

C. Camera Intrinsic Calibration Uncertainty

The camera intrinsic parameters are extracted through cal-
ibration. Based on the accuracy of the calibration object and
the suitability of the chosen model, calibration parameters
can turn into an important source of uncertainty. We assume
that the camera model contains no systematic error (or it has
been compensated) and the variance and covariance of the
uncertainty involved with the parameters are extracted during
the calibration process using methods such as the one proposed
by Leo and Paolillo [13]. In the pin-hole camera model used in
this paper, the set {fx, fy, cx, cy} contains the intrinsic values;
however, the work can be extended to any suitable model, as
long as the uncertainties of the parameters are extractable.

VI. UNCERTAINTY PROPAGATION FRAMEWORK

Based on the uncertainty modeling discussed in the previous
section, the measurement parameters will be perturbed by
a total number of 15 zero-mean random variables. These
variables are described by their respective probability distri-
butions if they are independent, or a group of variables are
defined by a joint distribution if they are correlated. We also
mentioned simple approaches on how to assign the statistics of
the random variables in a real setup. The focus of this section
is to propagate the input uncertainty distributions through the
measurement and obtain the probability distribution of the
resulting measurement (δx in Eq. 4).

This goal can be achieved in two ways. The first option
is the Monte Carlo method which is based on repeated
sampling of the input random variables to estimate the output
probability density function. Although this method is useful
for estimating complex output functions, the sampling space
grows exponentially with the input dimension. Moreover, the
process should be repeated in each constellation and for every
measurement point, which is not feasible for the current
application. Analytic methods, on the other hand, lead to
mathematical expressions which can be evaluated efficiently
for each desired constellation; however, they are often mathe-
matically cumbersome. To overcome this difficulty, the model
needs to be linearly approximated using Taylor series [14].



As seen in Eq. 3, the measurement point is obtained
through the function x = A−1b. To propagate the uncertainty
using analytic methods, this function needs to be linearly
approximated in terms of the uncertainty random variables.
However, due to the presence of a matrix inversion, this leads
to an improper function approximation. There exist upper and
lower bounds for the error analysis in linear systems [15];
however, we are interested in obtaining the output probability
distribution based on the input probabilities.

Haralick [14] proposes an interesting mathematical method
of covariance propagation for parameter estimation in the cases
where some desired parameter θ̂ is not obtained through an
explicit function of the observations υ, but rather through an
optimization of the form

θ̂ = argmin
θ

f(υ,θ). (6)

In this general form, f is a scalar function and υ denotes
the noisy observation whose covariance matrix Συ is known.
The goal is to obtain the covariance matrix of the resulting
parameter Σθ̂. According to this method, by linearly approx-
imating the gradient function g(υ,θ) = ∂f

∂θ , the relation in
Eq. 7 follows. This is based on the assumption that the second
derivatives of f (partial derivaties of g) exist. For more details,
the interested reader can refer to [14].

Σθ̂ = (
∂g

∂θ
)−1

∂gT

∂υ
Συ

∂g

∂υ
((
∂g

∂θ
)−1)T (7)

Once the measurement function is written in the form of
Eq. 6, the modeled input covariance matrix can be translated
to the measurement covariance matrix. Furthermore, the un-
certainty propagation framework obtained in this way will be
independent of the exact parametrization of the sources of
uncertainty, but rather it can be applied to any suitable sensor
model. To adapt the measurement function to that of [14],
we rewrite Eq. 3 in the equivalent form of Eq. 8, which also
avoids the matrix inversion term.

x̂ = argmin
x

(Ax− b)T(Ax− b) (8)

In this context, (Ax − b)T(Ax − b) represents the scalar
function f . The elements of A and b contain the perturbed
input parameters (i.e, the observations in Haralick’s notation)
whose uncertainties were modeled previously. x̂ is the re-
sulting measurement point for which we seek the covariance
matrix Σx̂. Consequently, by computing the second partial
derivatives of the defined scalar function and building the input
covariance matrix, the desired measurement covariance matrix
results from Eq. 7.

As the partial derivative of our scalar function with respect
to eφ is zero, this uniform variable, as expected, does not
effect the output uncertainties. Our input covariance matrix
Συ is a 15 × 15 matrix, whose diagonal elements are the
variances of the random variables and non-diagonal elements
denote the covariances of each pair of them. We assume that
all pairs of variables that are not in the same group (see

Section V) as well as the positioning variables defined in
Section V-B are independent. The covariances within the other
two groups (V-A and V-C) can be estimated during sample
image acquisition and camera calibration, as discussed in the
respective sections. This results in a 3 × 3 covariance matrix
Σx̂ describing the dispersion of each 3D point.

VII. APPLICATION: INSPECTION OF A CYLINDER HEAD

The focus of this section is to provide a practical use case to
demonstrate the applicability of the proposed framework. To
this end, we consider the problem of scanning a cylinder head
which moves on a conveyor belt. As seen in Fig. 4, the cylinder
head CAD model is relatively complex. Therefore, planning
methods can be particularly useful in generating optimized
sensor view-points. Moreover, there are certain tolerances to
be met during the inspection and it is of specific importance
to guarantee and optimize the measurement uncertainty along
other goals such as surface visibility.

Table II contains the assumed input standard deviations
for the random variables, which are also considered to be
uncorrelated. We have considered a value of 0.5mm as the
standard deviation of {eox , eoy , eoz , ed}, which is a typical
value for the position repeatability of industrial robots. For the
rotational uncertainties {eα, eβ , eγ , eθ}, a standard deviation
of 0.01◦ is assumed. The laser detection uncertainty {exp

, eyp}
has been experimentally approximated to the value of 0.2 px.
Similarly, the calibration uncertainties {efx , efy , ecx , ecy} are
chosen based on the typical accuracy of intrinsic camera cali-
bration. The assumed values have been used for demonstration
purposes and must be set according to the sensor, setup, and
the inspection object used.

A. Measurement Simulation & Demonstration of the Results

To apply the framework, we need the coordinates of the
points measured in a desired constellation as the cylinder head
is being moved. To this end, computer graphics methods have
been applied to simulate the measurement. We have imple-
mented a laser light source as a plugin to the Mitsuba renderer
[16] which is further used to render images from the camera
view. Fig. 5 displays a portion of a rendered image. Mitsuba

TABLE II: Assumed input standard deviations

Type of Uncertainty Random Variables σ

positioning eox , eoy , eoz , ed 0.5 mm

rotation eα, eβ , eγ , eθ 0.01◦

laser detection exp , eyp 0.2 px

calibration (focal length) efx , efy 2 px

calibration (projection center) ecx , ecy 0.5 px

Fig. 4: Cylinder head CAD model from two view-points



Fig. 5: Simulation of the cylinder head inspection

computes physically-based light transport and therefore it has
been utilized to extract the ground-truth coordinates of the
surface hit by the laser and captured by the camera. For each
2 millimeter movement of the cylinder head along the x-
axis, an image has been rendered. The simulations have been
performed at both sides of the cylinder head. In each image,
the laser line is detected using the method of center of gravity
[12] and the detected points are reconstructed using Eq. 2.

By applying the proposed framework, every measured point
has been associated with a covariance matrix which can be
used to evaluate the uncertainty along each desired direction.
Fig. 6 displays the resulting uncertainties along the z-axis, so
as to better illustrate the deviations from the nominal surface.
This result has been calculated for the constellation in which
θc = 90◦, τ = 30◦, dc = 200 mm and θl = 90◦, according
to the setup geometry in Fig. 1.

By simulating the inspection in any desired setup constella-
tion, the corresponding uncertainty metrics can be calculated.
The optimum configuration can be achieved by integrating
other quality metrics such as surface visibility and scan
density, and efficiently searching the parameter space for
positioning the laser and the camera. Moreover, this framework
can be utilized in estimating the individual contribution of each
source of uncertainty to the final measurement. To this end,
one just needs to change the input covariance matrix by setting
the variance and covariance of the non-intended variables to
zero and evaluate the result. In the case of the assumed input
uncertainties in Table II, more than 90% of the resulting
uncertainty is induced by the positioning random variables
eox , eoy , eoz and eod . This implies that the best practice to
improve the setup in this case, is to improve the positioning
system uncertainty, rather than investing time and money in
better calibration methods or image processing algorithms.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we studied a mathematical framework for
statistical modeling and propagation of the uncertainties in
a 3D inspection using laser scanners. By evaluating the
efficiency of the measurement in each sensor configuration,
the proposed approach can be applied to rapid prototyping
of demanding laser triangulation setups, where the precision
must meet certain tolerances. As the future work, we intend to
use the proposed framework together with other optimization
criteria such as visibility and scan resolution in a view-
planning algorithm to optimize the cylinder head inspection.
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