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Abstract
Inspired by vector field topology, an established tool for the extraction and identification of important features
of flows and vector fields, we develop means for the analysis of the structure of light transport. For that, we
derive an analogy to vector field topology that defines coherent structures in light transport. We also introduce
Finite-Time Path Deflection (FTPD), a scalar quantity that represents the deflection characteristic of all light
transport paths passing through a given point in space. For virtual scenes, the FTPD can be computed directly
using path-space Monte Carlo integration. We visualize the FTPD field for several example scenes and discuss
the revealed structures. Lastly, we show that the coherent regions visualized by the FTPD are closely related to
the coherent regions in our new topologically-motivated analysis of light transport. FTPD visualizations are thus
also visualizations of the structure of light transport.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications, I.6.6 [Com-
puter Graphics]: Simulation And Modeling—Simulation Output Analysis

1. Introduction

The simulation of light transport has been subject to exten-
sive research [RDGK12, KKG∗14]. While the main focus is
on the development of efficient rendering algorithms, some
more recent works visualize and analyze light transport to
gain insight into the complex nature of light propagation.
Previous approaches employed different domains for ana-
lyzing light transport, like ray space [Rus99, GFE∗12], fre-
quency domain [DHS∗05], light field domain [RKRD12],
and path space [SNM∗13]. However, the high-dimensional
nature of light transport makes it difficult to convey a mean-
ingful visual representation on a two-dimensional screen.

Although high-dimensional data is often explored with in-
formation visualization techniques [TM04], light transport
inherently takes place in the spatio-angular domain and it is
difficult to build a mental picture of a scene from abstract
visualizations. Therefore, we opt for a spatial visualization
that can complement the geometry of the scene. However,
a common problem of spatial visualizations is the lack of
dimensions, which is also an important aspect for research
in vector and tensor field visualization. A general approach
to this issue is a reduction of dimensions, for example, to
scalar fields, like the approach by Kindlmann et al. [KW99]
for visualizing tensor fields with volume rendering or the
technique by Haller [Hal01] for visualizing coherent struc-
tures of vector fields with the finite-time Lyapunov exponent
(FTLE) field.

However, unlike vector and tensor fields, light transport
not only depends on the position, but also on the direction,
which poses additional challenges for visualization. More-
over, light transport usually exhibits strongly varying char-
acteristics with respect to position and direction: it is con-
stant along a ray in vacuum, it can be smooth under dif-
fuse lighting on a surface, but it also contains discontinu-
ities at shadow edges, mirrors, or refractive objects. Due to
these rather unique properties, it is not feasible to use ex-
isting techniques from vector and tensor field visualization.
Therefore, we present a novel method that is specifically tai-
lored for visualizing light transport, but that is also inspired
by well-known approaches to vector field visualization.

Our contributions are the introduction of a light trans-
port analogy to vector field topology, as well as a novel
technique for visualizing coherent structures of light trans-
port. In our analogy, we discuss the applicability of topolog-
ical aspects such as critical points and separatrices to light
transport. Moreover, we introduce the finite-time path de-
flection (FTPD), a scalar-valued quantity that represents the
deflection characteristic of all light transport paths passing
through a given point in space. The FTPD may be com-
puted using path-space Monte Carlo Integration, requiring
only minor modifications of well-established algorithms of
light transport [KKG∗14]. The absolute value of the FTPD
hints at the amount of light scattering in the neighborhood
of a given point. Discontinuous change in the FTPD hints
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at changes in visibility, surrounding geometry, and material
parameters. The FTPD may be computed with or without the
weighting of actual incoming light, allowing for the analysis
of both actual and potential light transport.

Color-coding the FTPD and its derivative yields visualiza-
tions of the structure of light transport in a given scene. The
FTPD is computed from the variance of slightly diverging
path samples, which makes it conceptually somewhat similar
to the FTLE used for the extraction of Lagrangian coherent
structures (LCS) in vector fields [Hal01]. Like for the FTLE
field, ridges in the FTPD field trivially hint at repellers, such
as walls in a scene, and its magnitude indicates the amount
of light scattering. However, in contrast to the FTLE, many
interesting phenomena are found in the FTPD’s first and sec-
ond derivatives. Since human perception is sensitive to dis-
continuities in color and first-order discontinuities in bright-
ness these structures are visible in the visualizations as well.

2. Related Work

In this section, we discuss previous work related to the vi-
sual analysis of light transport and vector fields. The latter is
important for our work, because it is a well-studied subject
and serves as an inspiration in terms of methodology.

2.1. Visual Analysis of Light Transport

Global light transport in the absence of participating media
is described by Kajiya’s rendering equation [Kaj86] and the
complex nature of light interaction has led to a large body of
solution techniques. However, we focus on the visual analy-
sis of light transport and we refer the reader to the works by
Ritschel et al. [RDGK12] and Křivánek et al. [KKG∗14] for
a detailed discussion on rendering algorithms.

A common approach to studying light transport is a fre-
quency analysis of the plenoptic function. For example, Ra-
mamoorthi et al. [RH04] showed that the reflection equa-
tion is a convolution with the BRDF in the angular do-
main. Subsequently, Ramamoorthi et al. [RMB07] demon-
strated how the convolving nature of reflection affects gra-
dients in the spatial domain. Durand et al. [DHS∗05] visu-
alized and analyzed the frequency content of radiance and
how it is altered by shading, occlusion, and transport, which
can be exploited for adaptive sampling. Similar sampling
optimizations, based on frequency analyses, were achieved
by Egan et al. [EHDR11] and by Mehta et al. [MYRD14].
For Monte Carlo integration, Durand [Dur11] employed a
frequency analysis to study the link between properties of
the sampling pattern and the integrand. Furthermore, Ra-
mamoorthi et al. [RAMN12] presented a Fourier approach
to analyze and optimize the sampling of area light sources.
However, although frequency analyses help understand cer-
tain phenomena of light transport or optimize algorithms, it
is hard to visually gain insight in light transport.

In contrast, our approach visualizes changes in visibility,

surrounding geometry, and material parameters. Computing
visibility is a major topic in computer graphics and we re-
fer the reader to the surveys by Bittner and Wonka [BW03]
and Cohen-Or et al. [COCSD03]; however, we study coher-
ent structures in visibility. Durand et al. [DDP97] presented
the visibility skeleton, a structural representation of coherent
visibility in a scene. However, the focus on direct visibility
limits its use for a holistic analysis of light transport. Dis-
continuities in the light field also play an important role for
irradiance caches [SJJ12]. Chajdas et al. [CWW11] visual-
ized the irradiance vector field, which indicates the dominant
light direction. However, this strongly limits insight due to
the high loss of information.

Visualizing light transport is an emerging topic in visu-
alization and computer graphics, and can be inspired by
real-world experiments [HFI∗08]. One of the most simple
approaches is the visualization of light rays as geometric
primitives [Rus99, GFE∗12]. However, insight is strongly
limited, either due to an overly sparse representation or
due to visual cluttering. On a higher level of abstraction,
Reiner et al. [RKRD12] presented a set of visualization tech-
niques like spherical plots and particle flow tools for a se-
lective inspection of light transport, which supports digital
artists in understanding where certain illumination features
originate. Schmidt et al. [SNM∗13] visualized light paths
with edge bundling [HvW09] to reduce visual cluttering and
to support artists in path re-targeting. Spencer et al. [SJL14]
employed parallel coordinates and the focus-plus-context
paradigm [CMS99] to visualize photon distributions. How-
ever, all these methods focus on only local regions of a scene
and require that a user manually explores the domain of light
transport. In contrast, we provide a dense visualization tech-
nique that automatically highlights coherent structures.

2.2. Topology-based Visualization of Vector Fields

Our approach of visualizing coherent structures of light
transport is inspired by topology-based flow visualization.
However, since the definitions, methodology, and algorithms
of flow visualization cannot be directly adopted for light
transport, we focus only on the common basic principles on
a conceptual level. For a more detailed discussion, we refer
to the book chapter by Scheuermann and Tricoche [ST05]
as well as the surveys by Laramee et al. [LHZP07] and Pob-
itzer et al. [PPF∗11]. The topological skeleton of a steady
vector field consists of its critical points and their lower-
dimensional invariant manifolds, the separatices, partition-
ing regions of different flow behaviour [HH91]. In a simi-
lar spirit, we extract the so-called visibility skeleton of light
transport that partitions regions of different direct and in-
direct visibility; however, therefore, we introduce our own
definitions of interaction points and separatrices.

For time-dependent vector fields, LCS [HY00] can pro-
vide information on flow separation similar to separatrices
for steady vector fields. In particular, Haller [Hal01] com-
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puted the FTLE of velocity fields and identified the ridges of
the FTLE field as LCS. Moreover, Shadden et al. [SLM05]
showed that particles seeded near the FTLE ridges do not
cross them, demonstrating the physical significance of LCS.
In a similar spirit, we introduce a novel quantity, the FTPD,
which is insprired by the idea of FTLE to measure flow
separation. However, our definition of the FTPD is tailored
for light transport, which is signicifantly different from fluid
flow and FTLE. Nonetheless, the FTPD allows us to extract
coherent structures of light transport in a similar manner to
the ridge extraction of the FTLE field.

3. Background

Unlike flows and similar dynamical systems, traveling light
cannot be described by a simple vector field. Unless inter-
acting with matter, light travels freely along straight lines in
space, through any point in any number of directions at the
same time without interfering. Consequently, no single vec-
tor can fully describe all light passing through a given point.

3.1. Plenoptic Function

The plenoptic function L(x,ω) describes the amount of light
passing through every point in space in every direction. It
thus fully describes the light field. In 3D space, L is a 5D
function that defines the radiance propagated along a ray
starting at a given point and extending in a given direction.

In order to conveniently define constraints resulting from
interactions such as reflection, transmission or refraction,
the plenoptic function is rarely used directly, but rather
split into functions of incident radiance Li and exitant ra-
diance Lo [Vea98]. While incident radiance Li(p,ω) de-
scribes the radiance arriving at p from direction ω, exitant
radiance Lo(p,ω) describes the radiance leaving p in direc-
tion ω. In particular, the radiance along an unobstructed line
segment in empty space remains constant:

L(p,ω) = Lo(p,ω) = Li(p,−ω). (1)

3.2. Rendering Equation

In this paper, we limit ourselves to radiance transfer be-
tween interacting surfaces. The reflective behavior of opaque
scene geometry is typically described by the rendering equa-
tion [Kaj86] that relates the outgoing radiance at surface
points with the radiance incoming from above the surface:

Lo(x,ω) =
∫

Ω(x)
fr(x,ν→ ω)Li(x,ν)〈n(x),ν〉+dν. (2)

Here, Ω(x) denotes the unit hemisphere of directions,
aligned with the surface normal n(x). The bidirectional re-
flectance distribution function (BRDF) fr specifies the ratio
between differential outgoing radiance Lo(x,ω) and differ-
ential incoming irradiance Li(x,ν)〈n(x),ν〉+dν.

While the equation in its presented form only accounts for

opaque surface reflection, similar equations can be defined to
describe transmittance, refraction or even scattering of light
in participating media.

3.3. Radiance Transfer Function

Together, propagation equation (1) and rendering equa-
tion (2) make for a recursive definition of light transport. Ex-
pansion yields the infinitely-dimensional integral equations
solved by light transport algorithms. In order to allow for
a generic analysis, we introduce the global radiance trans-
fer function that quantifies the amount of radiance exitant
at each point y in each direction ν when radiance passes
through the differential cone (dA(x),dω) at point x in direc-
tion ω (Fig. 1(a)). Thus, it fully describes all light transport:

To(x,ω→ y,ν) = d3

dLo(x,ω)dA(x)dω
Lo(y,ν). (3)

The radiance transfer function To basically specifies the in-
fluence of light at one point on other points. It resolves
all constraints imposed on light transport, allowing for an
abstract analysis without reference of individual rendering
equations. In 3D space, To is a 10-dimensional function.

4. A Vector Field Topology Analogy

Although light transport cannot be described by a vector
field, we can borrow some aspects of vector field topology
to build a terminology for its structure. This section defines
such a structure in an abstract way that does not allow direct
computation. In the next section we will develop computable
means for its visualization.

4.1. Interaction Points

In light transport, there is no clear match for critical points
as defined in vector field topology. Still, there are points that
change light transport and thus dictate its structure where the
equation of unobstructed light propagation (1) is violated:

I = { x | ∃ω :
d

dLi(p,−ω)
Lo(p,ω) 6= 1 }. (4)

In the case of scene geometry, I includes all surfaces. In
general, I contains all points of light interaction, henceforth
called interaction points. In participating media, I contains
all points. However, light sources that do not interfere with
light passing through, only adding to it, are not included.

Light Sources To include such non-interfering light
sources, we can add the violation of Eqn. (1) in its non-
differential form as a criterion for the enhanced set of in-
teraction points Ie:

Ie = I ∪{ x | ∃ω : Lo(p,ω) 6= Li(p,−ω) }. (5)

Sensors For convenience, we define sensors to absorb in-
coming light. Thus, sensors are also included in I and the
set of k-vertex light transport paths Ω̄k can be written as Ik

e .
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Figure 1: (a): The radiance transfer function To(x,ω→ y,ν) yields the radiance reflected at point y in direction ν per radiance
passing through the differential cone (dA(x),dω) located at point x with direction ω. It respects all possible light paths.
(b): Visibility separatrix, (c): light separatrices and (d): indirect light separatrices, marked in purple. Area lights are marked
orange. Influence is marked in the color of the corresponding point of interest. Case (d) depicts indirect light separatrices
caused by a mirroring ground plane. The reflection lobe illustrates the effect of a glossy ground instead of a mirror.

4.2. Coherent Structures

In light transport, it is common for light to be scattered in all
directions, easily reaching any point in space after only a few
interactions. It is therefore futile to partition the light field
by separation of particle trajectories. To obtain meaningful
regions, we consider two adjacent points coherent if their
influence on almost all interaction points is similar. We group
such coherent points into coherent regions, separated by the
set S of separating points forming separatrices.

4.2.1. Influence

We define the influence I(x→ y) of light passing through
the point of interest x on outgoing light at point y as:

I(x→ y) =
∫

S2
J(x,ω)

∫
S2

To(x,ω→ y,ν)dνdω. (6)

Essentially, this function computes all radiance transfer from
point x to point y. The influence weight function J allows
for a weighted consideration of radiance transfer depend-
ing on the outgoing light direction at x. We will later set
J(x,ω) = 1 to analyze abstract light transport, whereas we
will set J(x,ω) = Lo(x,ω) for concrete light transport.

In order to separate regions of coherent influence, we
quantify the global change in influence at point x along di-
rections h, by integrating the local change in influence on all
interaction points with respect to h:

Dh(x) :=
∫
I

∣∣∣∣h · ∂

∂x
I(x→ y)

∣∣∣∣dA(y). (7)

4.2.2. Separatrices

Unfortunately, the absolute value of Dh(x) is not a good
criterion to locally identify separating points: Figure 1(b)
shows how the influence on interaction points constantly
changes as we move the point of interest, even in regions
that we would intuitively call coherent. Instead, discontinu-
ities in Dh indicate large-scale change in influence (see Sec-
tion 4.3). Consequently, we look for separatrices where the

derivative of Dh exceeds a given threshold τ:

Sτ = { x | ∃ω : |∇ωDω(x)| ≥ τ } . (8)

Discontinuities of Dh are included in that set, since the mag-
nitude of its derivative at these points is unbounded.

4.3. Examples

For brevity, we first consider only direct influence. We can
compute the direct influence for point x in Figure 1(b, c) as:

I(x→ y) =
∫

S2
J(x,−→xy)V (x↔ y)G(x↔ y) fr(y,−→yx→ ν)dν

= J(x,−→xy)V (x↔ y)2kd
〈n(y),−→yx〉+
‖x−y‖2 =: J V Cd .

The arrow above vector pairs indicates unit vectors. Here, G
is the geometry term, V denotes visibility, and fr denotes the
BRDF, which, for simplicity, we assume to be diffuse, i.e.
kd
π

, collapsing continuous terms to Cd . Note that in Eq. (6),
the inner integral

∫
S2 To dν =V Cd .

4.3.1. Visibility Separatrices

Consider the example shown in Figure 1(b). We set J = 1
since there is no radiance weighting, V (x↔ (y ∈ A)) = 1,
and V ((x1,x2)↔ ((y1,y2) ∈ B∪C)) = σ(y1 + x1), where σ

is the step function. For the change in influence, we get:

Dh(x) =
∫

A

∣∣C′d∣∣dA(y)+
∫

y∈B∪C,
y1≥−x1

∣∣C′d∣∣dA(y)+ ∑
y∈B∪C,
y1=−x1

|Cd |,

with C′d = h · ∂

∂xCd . The summation and the constrained in-
tegral result from the product rule yielding δ and σ, respec-
tively. For points x on the left of the separatrix (marked blue
and red), the sum is reduced to a single summand. Due to
continuity of the BRDF and the geometry term as well as
continuous expansion of the second integral domain, Dh is
continuous at these points. On the right of the separatrix
(green point), the summation is empty and both integral do-
mains are constant, ergo Dh is also continuous. For points on
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Figure 2: Computation of the pairwise path deviation ∆ from two paths x̄, ȳ deflected by a mirror (a) and a diffuse surface (b)

the separatrix, however, the domain expanse for the second
integral is discontinuous, abruptly adding C′d integrated over
the entire surface B. Since C′d > 0, Dh is discontinuous, indi-
cating the separatrix. Note that while there are also infinitely
many summands in this case, Cd = 0 in all of these.

4.3.2. Light Separatrices

In example (c), we set J(x,ω) to 1 if there is a ray in di-
rection ω from the light source through point x, otherwise
we set it to 0. For the depicted points, this corresponds
to J(x→ y) = σ(y2−3x2). Computing the change in influ-
ence, we get:

Dh(x) =
∫

y∈C,
y2≥3x2

∣∣C′d∣∣dA(y)+
∣∣∣Cd

∣∣∣ y∈C,
y2=3x2

.

Clearly, the domain of the constrained integral shrinks con-
tinuously as the point of interest x moves upwards. The sec-
ond term, however, only exists for points in-between the two
upper separatrices, causing discontinuities in Dh on both.
These mark the additional light-induced separatrices.

4.3.3. Fuzzy Separatrices

Figure 1(d) shows the indirect light-induced separatrices that
would be detected if the ground plane was a perfect mirror.
The example works in much the same way as example (c),
in this case the masking σ terms are simply passed through
the rendering equation by the Dirac δ in the mirror BRDF.

In case of a glossy ground plane (as indicated by the re-
flection lobe for the red point), the masking σ terms undergo
a convolution with the BRDF in the rendering equation. In
this case, Dh is no longer discontinuous on separatrices: As
indicated by the red gradient, points on the left side of the
leftmost separatrix still influence points of C, there is no
abrupt cut-off of a differential influence term in the change
of influence. However, for a moderately glossy ground plane,
the change in Dh would still be high near such ‘fuzzy’ sepa-
ratrices. Their inclusion in Sτ depends on the threshold τ.

5. Finite-time Path Deflection

In general, the separatrix criterion in Eqn. (8) cannot be com-
puted directly: Since the integrand in Eqn. (7) depends on

exact solutions of the pointwise influence derivatives, pro-
gressive numerical methods such as Monte Carlo integration
cannot be employed.

Motivated by the attempts at vector field topology based
on the divergence of advected particles trajectories, such as
the FTLE, we try to take a similar approach to the structural
analysis of light transport. In light transport, however, there
are no unique particle trajectories. We therefore need to take
into account distributions of trajectories rather than compar-
ing distinct trajectories.

In fact, when computing light transport numerically, we
sample light paths, which are essentially distributions of par-
ticle trajectories. By associating each path with a probability
that equals its relative contribution, we obtain a distribution
of ‘trajectories’ that fully describes all light transport that led
to a certain measurement.

5.1. Pairwise Path Deviation

To quantify the divergence of a pair of paths, we de-
fine the pairwise path deviation (PWPD) ∆ that char-
acterizes the deviation of the end points xk, yl of two
paths x̄ = (x1,x2, . . . ,xk), ȳ = (y1,y2, . . . ,yl) of Euclidean
run lengths t(x̄) = ∑‖xi+1−xi‖, t(ȳ) from what would be
expected in empty space when starting at x1 towards x2 and
at y1 towards y2, respectively. Figure 2 illustrates the basic
properties of ∆:

∆(x̄, ȳ) =
‖xk−yl‖

‖(x1 + t(x̄)−−→x1 x2)− (y1 + t(ȳ)−−→y1 y2)‖
−1. (9)

As it is impossible to come up with a meaningful and com-
putable one-to-one mapping between ‘similar’ paths of two
distributions to compute the PWPD for, we take the alterna-
tive approach of computing ∆ for all pairs of paths. Apply-
ing ∆ to a product distribution of path distributions yields a
PWPD distribution that can be characterized using standard
statistical measures such as mean value and variance.

In order to obtain well-defined results, ∆ needs to be reg-
ularized, as discussed in the supplementary materials to an
(almost) C1-function. There are several options for that. We
opt to multiply by −2r3 +3r2 where r is proportional to the
tangent of the half angle between the starting segments.
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Figure 3: FTPD (a),(b),(c) and FTPD gradient (d),(e),(f) for three scenes. (a),(d): A diffuse ‘stair wall’ (gray) illuminated by
an area light (white). (b),(e): An area light (white) that indirectly illuminates two diffuse objects (gray) through a two-piece
system of mirrors (green). (c),(f): An area-lit mirroring sphere (green) that illuminates a diffuse cube (gray).

5.2. PWPD Moments

Based on the distributions of paths starting near a point x and
direction ω, we define the i-th directional PWPD moment as:

m[t0,t1]
∆i (x,ω) =

∫
[t0,t1]×Ω̄t

∗×Ω̄t
∗

∆(x̄, ȳ)i p(x,ω)× (x̄, ȳ) dµ×(t, x̄, ȳ). (10)

The product probability density p(x,ω)× (x̄, ȳ) equals the prod-
uct of the relative contributions of paths x̄, ȳ. The prod-
uct measure dµ×(t, x̄, ȳ) = dt

t1−t0 dµ(x̄)dµ(ȳ) simply averages
paths of all lengths t ∈ [t0, t1]. We denote the set of all paths
of run length t starting at any point in space by Ω̄

t
∗. In the

supplementary material we discuss how dµ(x̄) needs to be
defined to properly measure the extended path space Ω̄

t
∗.

5.3. FTPD Field

The finite-time path deflection (FTPD), which we will denote
by σ

[t0,t1](x), is a scalar value that characterizes the amount
of light scattering that occurs on all paths passing through
point x in all directions. It is computed from a weighted av-
erage of the directional PWPD moments:

m[t0,t1]
∆i (x) =

∫
S2

w(x,ω) m[t0,t1]
∆i (x,ω) dω, (11)

σ
[t0,t1](x) =

√
m[t0,t1]

∆2 (x)+
√

m[t0,t1]
∆2 (x)−m[t0,t1]

∆1 (x)2. (12)

Just like in the theoretical topology analogy, the weight func-
tion w allows for the incorporation of concrete lighting con-
ditions by setting w(x,ω) proportional to the actual radiance
as opposed to constantly setting it 1

2π
.

The FTPD σ
[t0,t1](x) itself is defined as the sum of two

‘standard deviations’, the first characterizing the scattering
of light in terms of deviation from unobstructed light prop-

agation, the second characterizing the variance of pairwise
deviation values.

5.4. Coherent Structures

As we will shortly see in the visualizations, there is a direct
relationship between the FTPD and the influence of passing
light as discussed in the previous section. The mathemati-
cal relationship is also visible in our analogous definition of
coherent structures (compare with Eqn. (8)), and further dis-
cussed in Sections 3.1-3.4 in the supplementary materials.
The threshold-parameterized set of FTPD separatrices is:

Sσ
[t0 ,t1 ]

τ =
{

x
∣∣∣ ∃ω : |∇2

ωσ
[t0,t1](x)| ≥ τ

}
. (13)

Here, ∇2
ω denotes the second directional derivative. As for

interaction points, there is not much to be gained from the
FTPD, since they simply coincide with the scene geometry
known as part of the simulation of light transport.

5.5. Visual Approach to Understanding the FTPD

This section provides interpretations of visualizations ob-
tained from the radiance-weighted FTPD. We summarize
the most important phenomena visible in the results, more
detail is provided in the supplementary materials. Figure 3
shows the color-coded radiance-weighted FTPD and FTPD
gradients computed for various diffuse scenes in ‘flatland’
(radiance transfer in 2D worlds). The FTPD field encodes
the amount of deflection of the light transport paths passing
through each point in the field. Unsurprisingly, the FTPD
increases from the light source towards the geometry. The
stair steps (left column) introduce discontinuities into the
FTPD field where the topology analogy would find separa-
trices. While the gradient magnitude (luminance) is rather
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Figure 4: FTPD (a) and FTPD gradient (b) fields for two glossy surfaces lit by a small area light, showing band-limited (fuzzy)
separatrices caused by Phong-exponents 200 (right) and 2000 (left). FTPD (c) and FTPD gradient (d) fields for point-lit surface
patches with different glossiness (green, descending from moderately glossy to a perfect mirror). The borders on either side of
the glossy surfaces are diffuse.
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Figure 5: Omni-directionally integrated radiance (a), FTPD (b) and FTPD gradient (c) fields for a refracting glass sphere lit
by a small area light. Light paths used for radiance integration and radiance weighting were limited to a length of 6 segments.

noisy due to the sample variance of the FTPD, the texture
that results from the color-coded gradient directions still re-
veals coherent regions.

Propagation of Separatrices Figure 3 also shows how sep-
aratrices propagate through mirrors. This permits to track the
influence of light on the scene at every point of light trans-
port paths. Even for the curved mirror, the indirectly lit cube
clearly partitions the light field between the area light and
the sphere. Also note that while not zero, the FTPD value is
still low near curved reflection.

Effects of Materials / BRDFs Figures 4(a) and (b) show
a similar setup where the perfect mirrors have been re-
placed by glossy surfaces (Phong-BRDF with exponents
200 and 2000). We can actually observe the fuzzy separa-
trices resulting from the band-limiting nature of glossy re-
flections as discussed in Section 4.3.3. Note that this af-
fects separatrices on both sides of the reflection due to the
glossy spreading of deflection pairs and due to a fuzzy radi-
ance weighting caused by the filtered incoming light. Higher
Phong-exponents result in sharper separatrices. Figures 4(c)
and (d) compare the FTPD computed for patches with differ-
ent glossiness values (Phong-BRDF with exponents 37, 112,
1029, and a perfect mirror). Higher Phong-exponents result
in lower path deflection. This corresponds to the intuition of
the FTPD being a variance-like value.

Coherent Structures in Forward-Time Figures 3 and 4
also illustrate how the FTPD can be interpreted as a kind
of ‘reverse shadow’ that allows to foresee interactions with

objects on the routes of light transport paths in forward-
time. We can observe how the resulting separatrices at the
light source indicate on which side of the responsible ob-
jects or corners the light passing on either side of the sepa-
ratrices will end up. In contrast, structure found in the light
field as defined by the plenoptic function solely results from
backward-time events. This gives further intuition on the
meaning of coherent structures in light transport: They an-
alyze coherency with respect to where light is headed and
what geometry and materials it encounters on the way. The
FTPD maps the response of the scene to light impulses going
out from points in the field to a single scalar value.

Refraction Figure 5 shows the FTPD field for a glass
sphere featuring curved refraction and reflection including
the evaluation of Fresnel-terms. The complex light trans-
port resulting from the many possible light paths result in
many different separatrices caused by different phenomena.
In this special case of highly structured light transport, the
radiance field is already highly structured in itself. Note how
the radiance-weighted FTPD retains the structure of the ra-
diance field. The FTPD field additionally puts its forward-
directed structure on top of the radiance structure. A detailed
discussion is provided in the supplementary materials.

2D and 3D Example Scenes In contrast to the previous 2D-
flatland examples, Figure 6 shows the FTPD computed for
a planar slice through diffuse 3D scenes. Separatrices in-
duced by light sources follow the rays leading away from
the source and are best captured if the light source, and thus
light rays emanating from the source, are contained in the
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Figure 6: FTPD (a),(b),(c),(f) and FTPD gradient (d),(e) fields for more scenes, including 3D examples. (a),(b): U-shaped
room lit by an area light. (b),(d): Slice through the 3D ‘Metropolis Light Transport [Vea98] Door Scene’ lit by a point light.
The walls reflect the actual radiance. (c): FTPD for a slice of a 3D canal lit by a point light, unblocked (left) and blocked by an
obstacle (right). (f): 3D scene [Lla10] where the slice does not contain the point light above the pot plant in front of the column.

slice plane. Otherwise light rays only penetrate the plane
(not forming distinct linear structures), and hit geometry on
the other side which results in visible projections of this ge-
ometry onto the slice.

Discontinuity Analysis Many separatrices in the FTPD
fields in Figure 6 are rather subtle. Discontinuities in the gra-
dient visualization separate coherent regions more clearly.
This complies with our exemplary analytic consideration of
light transport in Section 4.3, affirming the analogous def-
inition of FTPD separatrices. At this point we note that it
should in fact be unexpected to find that many separatrices
marked by zero-order discontinuities in the FTPD fields of
previous examples. These result from the fact that in prac-
tice, we cannot spawn pairs of paths with infinitesimally
close directions, causing discontinuities to occupy more than
an infinitesimally small solid angle in the FTPD integral.

5.6. Unweighted FTPD

So far, we have only looked at radiance-weighted FTPD. Set-
ting w = 1, the FTPD equally respects all potential light di-
rections. Thus, there are no more light-induced separatrices,
leaving the change of visibility as the only cause (mostly
direct, indirect only near singular BRDFs). Figure 7 shows
such an FTPD field with gradients. Without radiance weight-
ing, the FTPD still increases towards surfaces and decreases
in larger open spaces. The mirror and the prism open addi-
tional ‘virtual’ empty spaces via (total internal) reflection.
We can even observe an indirect separatrix leading off the
upper end of the mirror, caused by change in visibility of the
back part of the central arrow head, blocked by the contained
square on one side but influenced by light on the other side.

5.7. Importance-weighted FTPD

The FTPD field in Figure 7(c) was computed from deflec-
tion pairs started along camera rays. The FTPD naturally
decreases as the distance to the first interaction increases. Its
appearance resembles ambient occlusion in the details since
it encodes not only the distance to the first hit point, but also
the subsequent path geometry and thus the shape of the sur-
rounding scene. Paths constrained by the coves amount to
lower FTPD values than paths leading to equidistant points
in the open. This reillustrates the FTPD’s meaning as a rep-
resentative value of the scene’s response to light impulses
and thus path geometry, scene geometry and materials.

6. Implementation

In this section, we describe how to compute the FTPD and
how it is employed for visualization. For illustration pur-
poses and to provide a proof of concept, we implemented a
flatland version of FTPD with a simple path tracer and next
event estimation using C++ and GLSL compute shaders.
Here, we build on the theoretical investigation of 2D light
transport by Jarosz et al. [JSKJ12]. Our 3D implementation
is based on the OptiX ray tracing framework.

6.1. Computing the Finite-time Path Deflection

The FTPD is straightforward to compute using Monte Carlo
integration (MCI), much in the same way as any light trans-
port algorithm: For each point, we start by choosing a ran-
dom Euclidean run length T ∈ [t0, t1] and a random direction
for which to compute the directional PWPD moments. For
radiance-weighted FTPD, we then sample a light subpath in
the opposite direction, trying to connect the current point
with a light source. Independently of the weight function,
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Figure 7: FTPD (a) and FTPD gradient (b) fields computed without any directional weighting by radiance/light sources.
(c): Visualization of a 3D scene [Lla10] with ‘Importance-weighted’ FTPD, traced along primary rays.

we randomly perturb the first direction to obtain a pair of di-
rections. We then sample two paths of run length T in one of
the directions each, starting at the current point. From these
two paths, we compute the pairwise path deviation.

We compute the first and second moments of the PWPD
with MCI. Therefore we accumulate both the sum of the
PWPD Σ∆ and the sum of its squares Σ∆

2, each element
multiplied by the relative contribution of both paths and the
weight function. Generally, we cannot normalize with re-
spect to weight and contribution in advance, therefore we
also integrate the total of these cofactors ΣP to allow for nor-
malization of the final FTPD values. Furthermore, for correct
MCI, we divide all computed values by the respective prob-
ability densities. Finally, we compute the FTPD values:

σ
[t0,t1] =

√
Σ∆2

ΣP
+

√
Σ∆2

ΣP
−
(

Σ∆

ΣP

)2

. (14)

All our results were visualized with 100K to 500K samples
and computation times ranging from one to five hours.

6.2. Visualization

In 3D, the FTPD is a volumetric scalar field that we visualize
on a planar slice through the scene. For visualization, we use
the CIELAB color space to minimize fake non-linearities in-
troduced by perceptually non-linear interpolation. Since lo-
cal changes are small compared to the high range of FTPD
values, we evenly redistribute colors on the occurring val-
ues using a smooth histogram-based mapping. For the FTPD
gradient visualizations, we apply the Sobel operator to the
FTPD field, mapping 2D gradient direction to chromaticity
a∗ and b∗, and gradient magnitude to luminance L∗.

7. Conclusion

We have presented a technique to extract meaningful struc-
tures from global light transport in virtual scenes. For that,
we introduced an analogy to vector field topology that re-
places the analysis of deterministic trajectories by an analy-
sis of distributed radiance transfer, thus allowing application
to light transport. Since the separation criteria of the anal-
ogy cannot be computed directly, we introduced the FTPD
as a quantity suitable for Monte Carlo integration. Based on
the FTPD field, we defined analogous separation criteria and
demonstrated that these reveal similar structures.

We discussed the meaning of the resulting coherent re-
gions, demonstrating that the separatrices indicate non-local
changes in the global influence on the scene. The coher-
ent structures subsume what could be called the visibility
skeleton, separating regions of continuous visibility change.
However, the structures also reflect indirect visibility, as
for example caused by specular interactions and refractions,
even via moderately glossy interactions. In this regard, the
FTPD field can assist in targeted light placement, the regions
revealing the major options for different effect.

Analysis of concrete instances of light transport reveals
regions where the passing light has a coherent effect on ra-
diance transfer. Here, separatrices reveal splits in where the
passing light is headed. In contrast to ordinary flux visual-
izations, our visualizations focus on light that is actually in-
fluencing surface points, and they complete post-interaction
structures with pre-interaction structures, visualizing distinct
groups of complete light paths up to the light source. As
such, our visualizations can assist in occluder placement:
Here, each region indicates a different effect of occlusion.
We also visualize material properties. While more complex,
future work could try to extract information on the effect of
using specific materials in contexts such as interior design.

Besides these applications with utility in digital design
and architecture, the structures visualized by our approach
are closely related to correlated integrals in light transport
(see supplementary Secs. 3.1.2, 3.4). Finding, understanding
and exploiting such correlations is subject to active research.

Our approach can be limited by the inherently high di-
mensionality of light transport. As a consequence, the num-
ber of separatrices can become rather high even for moder-
ately complex scenes. In addition, the dimensionality reduc-
tion causes separatrices to cross each other, which is differ-
ent from the separatrices of vector fields. Therefore, it is usu-
ally more difficult to interpret our results compared to FTLE
visualizations, especially for complex scenes. One possibil-
ity to reduce clutter is to limit the number of light bounces.

In future work, however, more sophisticated filtering tech-
niques could be developed to extract only relevant structures
— automatically or by means of explorative tools and focus-
plus-context visualizations [CMS99]. We also plan to adapt
importance sampling for the computation of the pairwise
path deflection to decrease variance.
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