

Eurographics 2015

The 36th Annual Conference of the European Association for Computer Graphics

Rich-VPLs for Improving the Versatility of Many-Light Methods

F. Simon, J. Hanika, C. Dachsbacher Karlsruhe Institute of Technology

Photorealistic Rendering

- Based on Monte Carlo Methods
- Stochastically sample light carrying paths

• Low-Noise Monte Carlo rendering technique

Step 1: VPL creation

The 36th Annual Conferen European Association for Computer Graphics

Step 2: Shading

• Complex scenes and illumination effects require **many** lights

Adaptive clustering of VPLs (Lightcuts)

• For highly glossy materials many might not be enough

Adaptive clustering of VPLs (Lightcuts)

• Goal: Improve many-light efficiency for highly glossy materials

Clamping and Bias Compensation (Kollig & Keller 2004), VSLs (Hašan et al. 2009)

VSLs, Bidirectional Lightcuts (Walter et al. 2012)

• On glossy surfaces most energy is emitted in a small cone of directions

• Estimating the light leaving a surface point in all directions requires a lot of light paths

• Oversampling of the spatial and undersampling of the angular domain

- Popular assumption: diffuse VPLs
 - energy is emitted equally in all directions

Contributions

- Rich-VPLs: Account for many light path at once
- Importance Sampling: Make sure Rich-VPLs are well placed

Importance Sampling

- Intuitively VPLs should only be placed where (Georgiev & Slusallek 2010, Segovia et al. 2006)
 - there is a lot of energy and
 - they contribute to the image

$$f(X) = W_e(x_2 \to x_1) \left(\prod_{i=1}^{k-1} G_{x_i \leftrightarrow x_{i+1}} \right) \left(\prod_{i=2}^{k-1} f_r(x_i) \right) L_e(x_k \to x_{k-1})$$

17

- L_e : emitted radiance
- W_e : sensor importance

$$f(X) = W_e(x_2 \to x_1) \left(\prod_{i=1}^{k-1} G_{x_i \leftrightarrow x_{i+1}} \right) \left(\prod_{i=2}^{k-1} f_r(x_i) \right) L_e(x_k \to x_{k-1})$$

$$f(X) = W_e(x_2 \to x_1) \left(\prod_{i=1}^{k-1} G_{x_i \leftrightarrow x_{i+1}} \right) \left(\prod_{i=2}^{k-1} f_r(x_i) \right) L_e(x_k \to x_{k-1})$$

$$f(X) = W_e(x_2 \to x_1) \left(\prod_{i=1}^{k-1} G_{x_i \leftrightarrow x_{i+1}} \right) \left(\prod_{i=2}^{k-1} f_r(x_i) \right) L_e(x_k \to x_{k-1})$$

The 36th Annual Conference of the European Association for Computer Graphics

Importance Sampling

• $W(x_1, x_2, x_3)$: importance of VPL at x_3 for one pixel

$$f(X) = W(x_1, x_2, x_3) f_r(x_3) L(x_3, ..., x_k)$$

Importance Sampling - Total Incident Importance

$$\hat{W}(x_3) = \int_{x_2} W(x_1, x_2, x_3) dx_2$$

Importance Sampling - Total Incident Radiance

$$\hat{L}(x_3) = \int_{x_3, \dots, x_k} L(x_3, \dots, x_k) d(x_3, \dots, x_k)$$

Importance Sampling

- Goal: VPL distribution $\sim \hat{W}\hat{L}$
- Create photon map to estimate \hat{L}
- Create importon map to estimate \hat{W}
- Implementation: Rejection sample photons according to importance

Product Distribution

total incident radiance

Optional: Iterative Relaxation

- Improves the distribution of Rich-VPLs
- Simple distance based point repulsion (Spencer et al. 2013)
- Snap to nearest photon

Rich-VPL Creation

• Collect nearby photons to get information about the local illumination

Rich-VPL Creation

• Compute outgoing radiance distribution from the photons

Storing Outgoing Radiance

- Default: Tabulation with 32x32 discrete directions
- Alternative: Fit of Mises-Fisher lobes

 \approx 1GB per 100k Rich-VPLs

pprox 10MB per 100k Rich-VPLs

15 The 36th Annual Conference of the European Association for Computer Graphi

Results - 1.4M (Rich-)VPLs

VPLs VPLs & Importance Sampling Rich-VPLs & Importance Sampling

Results - 42k (Rich-)VPLs - Equal Time (14min)

Timings - Brute Force VPL Shading

Scene	#Lights	Importance sampling	Rich-VPL creation	Shade	Total
СВох	25k	11s	11s	567s	589s
U-Shape	35k	13s	8 s	533s	554s
Kitchen	42k	12s	10s	808s	830s

Discussion: Lightcuts

- Tabulation allows simple and fast clustering
- Highly glossy materials result in large cuts

Shading Times:

Scene	#Lights	Brute Force	Lightcuts
СВох	42k	13min	3min
Kitchen	150k	30min	15min
Garage	250k	100min	80min

Discussion: Bias

- Angular discretisation of tabulation
- Rich-VPL creation

The 36th Annual Conference of the European Association for Computer Graphics

Conclusion

- Improved many-light efficiency for highly glossy surfaces by using Rich-VPLs and Importance Sampling.
- Orthogonal to other Many-Light techniques like Lightcuts and VSLs.
- Memory footprint ↔ Bias
- Still needs clamping for artifact free renderings
 - Rich-VPLs + Bidirectional Lightcuts?

Backup

- Rejection Sampling
 - Rejection ratio (typically 100):
 - Importance of photon:
 - Average importance:
 - Rejection probability:

$$\bar{W}$$
$$p = \min\left(1, \frac{W}{q\bar{W}}\right)$$

q

W

Backup

- Estimating \hat{W} :
 - K nearest neighbours
 - Density estimation with Epanechnikov kernel:

$$\hat{W}(x) = \frac{2}{\pi d_K^2} \sum_{i=1}^K \Psi_i \cdot w_i(x)$$

$$w_i(x) = 1 - \frac{d_i^2}{d_K^2}$$

Iterative Relaxation

- Improves the distribution of Rich-VPLs
- Simple point repulsion (Spencer et al. 2013)

$$\Delta x = \frac{1}{K} \sum_{k=1}^{K} (x - x_k) \left(\frac{\|x - x_K\|}{\|x - x_k\| + \epsilon} - 1 \right)$$

Snap to nearest photon

75k Rich-VPLs 36min

75k Rich-VPLs 36min

100x36min

75k Rich-VPLs

36min

VPL (25k)

Rich-VPL (25k)

path tracing reference

Results - Kitchen 60min

Rich-VPLs

Photon Mapping

ΠΠ

IIIT

Path Tracing

2015 The 38th Annual Conference of the European Association for Computer Graphics

Direct Rendering of the Photon Map

Rich-VPL

Rendering of underlying photon map

Tabulated 32x32

~1GB per 100k Rich-VPLs

4x difference to

Mixture of 5 vMFs

~10MB per 100k **Rich-VPLs**

Storing Outgoing Radiance

- Tabulated (Octahedron Environment Map, Engelhardt 2008)
- Usually 32x32 discrete directions ω_o

$$L(x,\omega_o) = \sum_{j=1}^{K} w(d_j, d_K) f_r(x, \omega_j, \omega_o) \Phi_j$$

Discussion: Lightcuts

• More refinement (larger cuts) needed for smooth shading results

original refinement

more refinement

Importance Sampling

