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Fig. 1. Volume visualizations of the Vortex data set showing the scalar λ2 vortex criterion with different reflectance models for
illumination. (a) Volumetric scattering with the Henyey-Greenstein phase function without any glossy components. (b) Additional
specular highlights using Blinn–Phong’s isotropic model. (c) Our approach with anisotropic specular highlights using Lafortune’s
reflectance model, where highlights are automatically aligned with the principal direction of anisotropy of the tubular structures.

Abstract—We present a novel method to compute anisotropic shading for direct volume rendering to improve the perception of
the orientation and shape of surface-like structures. We determine the scale-aware anisotropy of a shading point by analyzing its
ambient region. We sample adjacent points with similar scalar values to perform a principal component analysis by computing the
eigenvectors and eigenvalues of the covariance matrix. In particular, we estimate the tangent directions, which serve as the tangent
frame for anisotropic bidirectional reflectance distribution functions. Moreover, we exploit the ratio of the eigenvalues to measure the
magnitude of the anisotropy at each shading point. Altogether, this allows us to model a data-driven, smooth transition from isotropic
to strongly anisotropic volume shading. In this way, the shape of volumetric features can be enhanced significantly by aligning
specular highlights along the principal direction of anisotropy. Our algorithm is independent of the transfer function, which allows us to
compute all shading parameters once and store them with the data set. We integrated our method in a GPU-based volume renderer,
which offers interactive control of the transfer function, light source positions, and viewpoint. Our results demonstrate the benefit of
anisotropic shading for visualization to achieve data-driven local illumination for improved perception compared to isotropic shading.

Index Terms—Direct volume rendering, volume illumination, anisotropic shading

1 INTRODUCTION

Volumetric shading with local illumination models can provide im-
portant visual cues to improve the perception of orientation, curvature,
and shape of surface-like structures in volumetric data sets. This is mo-
tivated by the human visual system, which is capable to reliably esti-
mate the properties of materials by pure visual observations [1]. In par-
ticular, specular reflections help convey the shape of surfaces [7, 13].
Probably the most commonly employed local illumination models in
direct volume rendering (DVR) are Phong [39] and Blinn–Phong [6]
illumination, which exhibit structural information of surfaces [47].
However, only point-wise information is taken into account, which
limits the perception of shape on a larger scale.
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Alternative ways to convey the shape of surface-like features are
the use of other visual representatives than specular highlights, for ex-
ample, lines [15] or moving particles [31]. Interrante [20] derived
a vector field from the principal curvatures of an isosurface to advect
virtual particles in tangent space and to compute a stroke texture with a
3D line integral convolution (LIC). However, the dense nature of these
techniques can lead to problems in the perceptual segregation of multi-
ple semi-transparent isosurfaces with overlapping patterns, which can
be the source of masking effects [12]. Therefore, we opt for a more
sparse visual representation based on local illumination.

Kindlmann et al. [24] employed curvature information of isosur-
faces to model a multidimensional transfer function. In this approach,
the principal curvatures are exploited to control contour thickness for
non-photorealistic volume rendering or to emphasize surface varia-
tions by directly mapping the principal curvatures to color. However,
in this way, color cannot be employed to visually differentiate scalar
values, which is an essential element of data classification in volume
rendering. In contrast, we employ illumination with specular high-
lights to visually enhance surface-like structures. A related principle
to our approach is the illumination with rim lights to visually enhance
the silhouette of an object with a glowing effect, but with our approach,
we are not restricted to the silhouette.



(a) (b) (c)

Fig. 2. Volume visualizations of a (a) sphere, (b) ellipsoid, and (c) cylin-
der. With our contribution, the (an)isotropic shape of the primitives is
mapped to (an)isotropic specular highlights for improved perception.

In tensor field visualization [23], the anisotropy of real-valued sym-
metric tensors is visualized by means of a local illumination model
that utilizes the tangent vectors instead of the normal to interpolate be-
tween planar and linear anisotropy. In this way, the specular highlights
are oriented according to the eigenvectors of the tensor. Moreover, in
regions of complete linear anisotropy, shading is identical to the ap-
proach by Zöckeler et al. [52] for illuminated streamlines. In point-
based rendering, Sanftmann and Weiskopf [42] employed the covari-
ance matrix to estimate normals and to visualize different types of
anisotropy of three-dimensional scatter plots with color coding. How-
ever, in contrast to all these methods, we focus on scalar fields.

Our contribution is a novel method to automatically estimate shad-
ing parameters for anisotropic bidirectional reflectance distribution
functions (BRDFs) from a scalar field as shown in Figure 2. For the
isotropic sphere, the highlight remains isotropic as well, but for the
ellipsoid and the cylinder, the highlights become anisotropic and sup-
port the perception of shape. We make it possible to utilize anisotropic
BRDFs for DVR and to determine meaningful parameters from the
data set. Among the large body of physically and phenomenologi-
cally motivated BRDFs, we choose Ward’s [50] and Lafortune’s [27]
reflectance models as representatives of both types. We introduce an
algorithm that allows us to estimate scale-dependent anisotropy from
features in the ambient region of a shading point. In this way, we
map the anisotropic shape of surface-like structures directly to the
anisotropy of a local illumination model, which allows us to visually
enhance the orientation and shape of complex features compared to
isotropic BRDFs. Furthermore, an important property of our algo-
rithm is that anisotropy estimation is independent of the transfer func-
tion, which provides interactive data exploration and frame rates.

2 RELATED WORK

Physically-based light transport in participating media is described by
the radiative transfer equation (RTE) [8]. However, for volume visu-
alization, simplified optical models [34] are often preferable because
they can be solved with higher performance and their parameters of-
ten provide improved control over the visual properties. The survey by
Jönsson et al. [22] summarizes illumination techniques that are often
employed in interactive DVR. However, no previous work is discussed
that employs anisotropic specular highlights.

In interactive DVR, gradient-based shading [29] still remains one
of the most widely used illumination techniques due to its high perfor-
mance and simple implementation. Hossain et al. [19] show how high-
quality gradients can be estimated from scalar field data, which are
then employed as surface normals to compute isotropic glossy high-
lights. Tao et al. [47] presented a technique to automatically optimize
light source positions and parameters, based on a metric that quantita-
tively measures how well a lighting setup visually conveys structural
information. The metric was evaluated positively in a user study and
therefore we employ this metric to study the benefit of our approach.

The literature in computer graphics provides several anisotropic
BRDF models [27, 35, 50, 40], but their application in volume ren-
dering was not considered so far. Although Kindlmann et al. [23] em-
ployed anisotropic highlights and DVR, the authors visualized second-
order tensor fields. Bista et al. [5] visualized fourth-order tensor fields
with anisotropic spherical harmonics lighting. However, with both lat-
ter approaches, anisotropy information was derived from the tensor
data, which is not available in our case. Spherical harmonics were also
employed by Schussmann and Ma [44] to illuminate and visualize line
data. Moreover, several approaches [32, 52] employ the tangent space

of lines to compute specular highlights. However, all these techniques
cannot be used for visualizing scalar fields.

In addition to local illumination, it was shown by several user
studies [28, 30] that shadows and advanced lighting effects improve
the perception of spatial depth and size. Volumetric ambient occlu-
sion [18] computes attenuation in the direct neighborhood of each
voxel to obtain local shadow information, which was improved by
Schlegel et al. [43] by using summed area tables [9]. Furthermore,
Ament et al. [3] also account for scattering effects in the ambient re-
gion of a sample point. With our method, we also gather information
from the neighborhood of a voxel; however, in contrast to all these
methods, we estimate the parameters for an anisotropic BRDF.

Directional shadows provide additional cues for occlusion on a
large scale, for example, by means of a shadow volume [4], deep
shadow maps [16] or spherical harmonics [26]. In addition, soft shad-
ows can help avoid disturbing illumination patterns. In interactive
DVR, many methods build on the single scattering model [34] together
with low-pass filtering operations [2, 37, 41, 43, 48]. Alternatively,
soft shadows can be also achieved by simulating multiple scattering,
for example, with a convection–diffusion model [51] or Monte-Carlo
integration [21, 25]. However, while volumetric shadows improve the
perception of spatial depth, we focus on the perception of local struc-
tures with anisotropic shading.

3 BASICS OF VOLUMETRIC ILLUMINATION

In this section, we briefly recapitulate the notation and basic principles
of volumetric illumination and shading. We build our approach on top
of the single scattering illumination model [34], which supports direc-
tional shadows. However, our technique does not depend on shadows
and only addresses local reflection of incoming light.

3.1 Single Scattering
The total radiance L(x,ω) at position x in direction ω is the sum of the
attenuated radiance Lb(xb,ω) from a boundary condition at position xb
and the integrated in-scattered radiance Li(x,ω):

L(x,ω) = T (xb,x)Lb(xb,ω)+
∫ x

xb

T (x′,x)σs(x′)Li(x′,ω)dx′, (1)

where σs(x) is the scattering coefficient. The transmittance T (x1,x2)
between any two points x1 and x2 is:

T (x1,x2) = e−
∫ x2

x1
σt (x′)dx′

, (2)

where σt(x) is the extinction coefficient. Furthermore, in Eqn. (1),
Li(x,ω) describes the amount of radiance that arrives from all direc-
tions at point x and that is scattered into direction ω:

Li(x,ω) =
∫

Ω

f (x,ω ′,ω)T (xb,x)Lb(xb,ω
′)dω

′, (3)

where Ω denotes the sphere of all directions and the scattering func-
tion f (x,ω ′,ω) describes how much radiance is scattered from incom-
ing direction ω ′ to outgoing direction ω . In contrast to physically
based rendering, we employ a phenomenologically motivated scatter-
ing function, which is often preferable for visualization [22]:

f (x,ω ′,ω) = kd(x) fd(x,ω
′,ω)

+ ks(x) fs(x,ω ′,ω)
(
ω
′ ·Nσt (x)

)
+ ,

(4)

where fd(x,ω ′,ω) simulates volumetric scattering with the Henyey-
Greenstein [17] phase function, which is weighted with the diffuse
coefficient kd(x). In addition, we explicitly model surface reflection,
and in particular glossy reflection, using a BRDF fs(x,ω ′,ω), which
is multiplied with the specular coefficient ks(x) and with the cosine of
the incident direction ω ′ and the normal vector Nσt (x), restricted to
the positive hemisphere as indicated by the subscript + symbol. For
rendering, we compute the normal vector from the estimated gradient
of the extinction coefficient:

Nσt (x) =−
∇σt(x)
‖∇σt(x)‖

, (5)



where σt depends on the transfer function. In addition, we restrict
specular highlights to surface-like structures by setting the specular
coefficient ks(x) equal to the gradient magnitude of the extinction co-
efficient:

ks(x) = ‖∇σt(x)‖ . (6)

Furthermore, we set the diffuse coefficient kd(x) = 1. Note that our
scattering function f (x,ω ′,ω) is not physically correct, for example,
with regard to conservation of energy, but is tailored to reduce the
number of parameters for visualization.

3.2 The BRDF
For visualizing different specular highlights, we employ the Blinn–
Phong [6], Ward [50], and Lafortune [27] BRDFs that we review
briefly for self-consistency. Subsequently, we require the normalized
half-way vector, which is defined as follows:

H(ω ′,ω) =
ω +ω ′

‖ω +ω ′‖
. (7)

Furthermore, for the anisotropic Ward and Lafortune BRDFs, we re-
quire the normalized tangent vectors U(x) and V (x) that specify the
principal directions of anisotropy. Note that they depend on the po-
sition x and it is our main contribution to introduce a novel method
to derive meaningful directions from the data set. However, in this
section, we assume that they are given.

3.2.1 Blinn–Phong
For comparison, we use the isotropic specular component of the
Blinn–Phong BRDF for volumetric illumination with:

fs,b(x,ω
′,ω) = (Nσt (x) ·H(ω,ω ′))κ(x), (8)

where κ(x) is the Blinn–Phong exponent that controls the glossiness
of the specular highlight.

3.2.2 Ward
Our first anisotropic model is the Ward BRDF:

fs,w(x,ω ′,ω) = A1(x,ω ′,ω) exp

(
− A2(x,ω ′,ω)

(H(ω ′,ω) ·Nσt (x))
2

)
. (9)

The terms controlling anisotropy in Eqn. (9) are described by:

A1(x,ω ′,ω) =
1

4π uw(x)vw(x)
√
(Nσt (x) ·ω ′)(Nσt (x) ·ω)

, (10)

A2(x,ω ′,ω) =

(
H(ω ′,ω) ·U(x)

uw(x)

)2
+

(
H(ω ′,ω) ·V (x)

vw(x)

)2
. (11)

In addition to the tangent vectors, the Ward BRDF requires specific pa-
rameters uw(x) and vw(x) that control the magnitudes of the anisotropy
in both tangent directions, respectively. They both depend on the posi-
tion x and one of our contributions is to derive meaningful values from
the data set.

3.2.3 Lafortune
From the class of phenomenological BRDFs, we use the specular com-
ponent of Lafortune’s BRDF:

fs,l(x,ω
′,ω) =

(
ul(x)ω̄

′
uω̄u + vl(x)ω̄

′
vω̄v +nl(x)ω̄

′
nω̄n
)κl(x) , (12)

where κl(x) is similar to the Blinn–Phong exponent, but we employ an
additional subscript l to highlight its association to Lafortune’s BRDF.
Moreover, ω̄ ′ = (ω̄ ′u, ω̄

′
v, ω̄

′
n)

T and ω̄ = (ω̄u, ω̄v, ω̄n)
T denote the in-

coming and outgoing directions with respect to the local orthonormal
frame U(x), V (x), and Nσt (x). In addition, the Lafortune BRDF pro-
vides specific parameters ul(x), vl(x), and nl(x) to control the shape of
the specular highlight. For a detailed discussion on these parameters,
the reader is referred to the thesis by McAllister [35]. For the remain-
der of this paper, we set nl(x) = 1, and one of our contributions is to
compute meaningful values for ul(x) and vl(x) from the data set.

4 THE TECHNIQUE

In this section, we present our novel technique for anisotropic volume
shading. In Section 4.1, we show how a local orthonormal frame of
reference is estimated from the data set, in particular, the tangent vec-
tors U(x) and V (x) for the principal anisotropy directions. Moreover,
in Section 4.2, we show how anisotropy is mapped to the Ward-specific
parameters uw(x) and vw(x) as well as the Lafortune-specific parame-
ters ul(x) and vl(x). Finally, in Section 4.3, we provide a discussion of
our approach with regard to parameters and our design choices.

4.1 Anisotropy Direction

We assume that volume data is stored in the form of a discrete Carte-
sian lattice that samples a scalar field s : R3 → R. On a high
level of abstraction, our algorithm first computes high-quality normals
from the unclassified scalar field s, which we briefly discuss in Sec-
tion 4.1.1. These normals then define local tangent planes at each
point x and we restrict the further computation of tangent vectors U(x)
and V (x) to this plane, which we explain in detail in Section 4.1.2. In
this way, our algorithm is independent of the transfer function and we
can exploit previous research in gradient estimation [10, 19, 36, 45] to
obtain high-quality normals, which is crucial for artifact-free shading.

4.1.1 Normal Vector Estimation

In contrast to the normal estimation in Eqn. (5) for rendering, we now
estimate normals from the gradient of the unclassified scalar field s:

N(x) =− ∇s(x)
‖∇s(x)‖

, (13)

where ∇s(x) can be any high-quality gradient estimator; subsequently,
we employ the Sobel operator [45]. Using N(x) instead of Nσt (x) has
the advantage that we can compute and filter gradients once and store
them on a grid, independent of the transfer function. It is important to
note that in many cases N(x) and Nσt (x) can differ only in their signs;
however, this does not affect the tangent plane. Furthermore, with a lo-
cally constant scalar field, we obtain ‖∇s(x)‖= 0 and we skip normal
and tangent estimation. In this case, it also follows that ‖∇σt(x)‖= 0,
independent of the transfer function and the specular coefficient be-
comes ks = 0, according to Eqn. (6). The latter observation also fol-
lows for a locally constant transfer function. Therefore, in both cases,
specular shading is not applied according to Eqn. (4).

4.1.2 Tangent Vector Estimation

After normal estimation, we restrict the computation of both tangent
vectors to tangent space. We build our approach of estimating tan-
gent vectors on a covariance analysis of the ambient neighborhood of
a point x. Similarly, several previous papers on point-based render-
ing estimate principal curvatures or normal vectors of a set of points,
for example, for mesh simplification [14, 38] or anisotropy classifi-
cation [42]. However, in contrast, we demonstrate how a covariance
analysis can be adapted to volumetric data and how its result can be
exploited to estimate high-quality tangent vectors for an anisotropic
BRDF.

Ambience Exploration The first step of our algorithm in comput-
ing tangent vectors at a point x is an explorative sampling of its ambi-
ent region. The goal of this step is to obtain a set of points Xa(x) that
are uniformly distributed in the interval volume [s(x)− ε, s(x) + ε],
where s(x) is the scalar value at point x and ε > 0 is a small number.

Therefore, we define a sphere of radius r that is centered at x and we
draw n samples of a probability density function that generates a set of
3D positions X(x) =

⋃n
i=1 xi of uniform density inside this sphere as

illustrated in Figure 3(a). To obtain xi = (xi,x,xi,y,xi,z)
T , we first draw

a random number ξ0 ∈ [0,1] from a uniform distribution to compute
the distance d ≤ r from the center of the sphere:

d = r 3
√

ξ0. (14)
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Fig. 3. Illustration of tangent vector estimation at point x with normal vector N(x). The scalar value s(x) defines an isosurface, which we want to
sample. (a) Computation of the point set X(x) by explorative sampling of the ambient region of x inside a sphere of radius r. (b) Computation of the
point set Xa(x) by taking all samples of X(x) that lie inside the interval volume defined by [s(x)− ε, s(x)+ ε]. (c) Computation of the point set Xp(x)
by projecting all samples of Xa(x) onto the tangent plane defined by the normal vector. (d) Computation of the point set X2(x) by transforming all
samples of Xp(x) into 2D space with η1(x) and η2(x) as local frame of reference. Then, the 2×2 covariance matrix is obtained from X2(x) and the
eigenvectors Λ1(x) and Λ2(x) describe the minor and major directions of anisotropy, respectively.

Second, we draw two additional random numbers ξ1,ξ2 ∈ [0,1] from
a uniform distribution to compute the position on the surface of the
sphere with center x = (xx,xy,xz)

T and radius d [11]:

xi,x = xx +2d cos(2πξ1)
√

ξ2 (1−ξ2) (15)

xi,y = xy +2d sin(2πξ1)
√

ξ2 (1−ξ2) (16)
xi,z = xz +d (1−2ξ2) . (17)

With these samples, we compute the set of positions Xa(x) that have a
similar scalar value as s(x) inside the sphere as shown in Figure 3(b):

Xa(x) = {xi : xi ∈ X(x), s(xi) ∈ [s(x)− ε, s(x)+ ε]} . (18)

Xa(x) is a subset of X(x) with |Xa(x)| = m ≤ n and its elements are
obtained by testing if the scalar value s(xi) of all elements xi ∈ X(x)
lies within the finite interval [s(x)− ε, s(x)+ ε]; we call Xa(x) the set
of accepted samples. In the limits ε → 0 and n→ ∞, Xa(x) contains
the set of all points that describe an isosurface with isovalue s(x) inside
the ambient sphere.

Projection The second step of our algorithm reduces the prob-
lem of tangent vector estimation to the tangent space, defined by the
previously computed high-quality normals. Therefore, the set of ac-
cepted samples Xa(x) is projected onto the tangent plane as shown in
Figure 3(c):

Xp(x) = {xi : xi = x− (N(x) · (yi− x))N(x), yi ∈ Xa(x)} . (19)

Subsequently, the projected 3D points are transformed into a local 2D
coordinate system to reduce anisotropy estimation to two dimensions
as illustrated in Figure 3(d). For this reason, we require a deterministic
and cheap method to compute a local frame of reference. In particu-
lar, we need two arbitrary orthonormal vectors η1(x) and η2(x) in the
tangent plane. Furthermore, we seek to avoid discontinuities of η1(x)
and η2(x) between adjacent samples, which could be a source of arti-
facts due to filtering. Therefore, we interpret the normal vector N(x)
as a position (φ(x),θ(x)) on the unit sphere. In this case, the radial
unit vector of this position is equal to the normal vector N(x). Conse-
quently, we obtain an orthonormal vector η1(x) with N(x) ·η1(x) = 0
by computing the unit vector eφ (x) in azimuthal direction. Then, the
second orthonormal vector η2(x) is computed by a cross product:

η1(x) = eφ (x) =−sin(φ(N(x)))ex + cos(φ(N(x)))ey (20)

η2(x) = η1(x)×N(x), (21)

where ex = (1,0,0)T and ey = (0,1,0)T are unit vectors in Cartesian
space and φ(N(x)) = atan2(Ny(x),Nx(x)). Finally, the set of projected
samples Xp(x) is transformed to 2D:

X2(x) =
{

xi : xi = (yi ·η1(x),yi ·η2(x))T , yi ∈ Xp(x)
}
. (22)

Note that X2(x) can be obtained directly without an explicit computa-
tion of Xp(x).

Covariance Matrix The third step of our algorithm employs the
set of projected 2D samples X2 to build a distance-weighted covariance
matrix C(x):

C(x) =
m

∑
i=1

(xi− x̄)(xi− x̄)T w
(
‖xi− x̄‖

r

)
, xi ∈ X2(x), (23)

where x̄ is the centroid of the m elements in X2(x):

x̄ =
1
m

m

∑
i=1

xi, xi ∈ X2(x). (24)

Moreover, w(d) is a monotonically decreasing weighting function. In
this paper, we use the following function:

w(d) =

{
1− x2 if d ≤ 1
0 else.

(25)

Note that C(x) is only a 2×2 matrix, because all xi ∈R2 and moreover
the matrix is symmetric and can thus be represented with only 3 values
C11(x), C12(x), and C22(x).

Filtering Since the computation of the covariance matrix is re-
stricted to tangent space, which is obtained from high-quality normal
vectors, it is often possible to extract eigenvectors from C(x) without
additional filtering. However, for small radii r and data sets with a
low signal–to–noise ratio, it can be necessary to perform additional
filtering of the tangent vectors. In principle, such filtering would be
applied after extracting the eigenvectors of C(x); however, filtering
the elements C11(x), C12(x), and C22(x) of the covariance matrix in-
stead of the eigenvectors has the advantage that no orthogonalization
is required after filtering. Therefore, we introduce an optional filtering
pass of the covariance matrix using a discrete Gaussian filter kernel,
before computing the eigenvectors.

Eigenanalysis Since C(x) is a positive semi-definite matrix, the
eigenvalues λ1(x) and λ2(x) are non-negative and real-valued. Both
eigenvalues can be computed from of the trace and determinant of the
covariance matrix:

λ1,2(x) =
tr(C(x))

2
±
√

tr(C(x))2

4
−det(C(x)). (26)

In addition, the corresponding eigenvectors Λ1(x) and Λ2(x) form an
orthogonal frame in tangent space, describing the principal compo-
nents of the point set X2. If C12(x) 6= 0, we get:

Λ1(x) = (C12(x),λ1−C11(x))T , (27)

Λ2(x) = (C12(x),λ2−C11(x))T . (28)



If C12(x) = 0, it follows that Λ1(x) = (1,0)T and Λ2(x) = (0,1)T with
respect to η1(x) and η2(x), describing an isotropic distribution. Sub-
sequently, we assume that λ1(x) ≤ λ2(x) or otherwise we swap both
values. Then, Λ2(x) points in the direction of the strongest variance
of the point set X2(x) which we identify with the major direction of
anisotropy and Λ1(x) with the minor direction. However, both eigen-
vectors are still given with respect to η1(x) and η2(x) and we need to
transform them back to 3D world space:

Λ̄1(x) = Λ1,x(x)η1(x)+Λ1,y(x)η2(x) (29)

Λ̄2(x) = Λ2,x(x)η1(x)+Λ2,y(x)η2(x). (30)

Finally, we obtain the normalized tangent vectors:

U(x) =
Λ̄2(x)∥∥Λ̄2(x)

∥∥ , V (x) =
Λ̄1(x)∥∥Λ̄1(x)

∥∥ . (31)

Note that U(x) and V (x) can be employed both for Lafortune’s and
Ward’s BRDF; however, the BRDFs have different parameters that
control the degree of anisotropy and the glossiness of the specular
highlights, which we discuss in the following section.

4.2 Anisotropy Mapping

For both BRDFs, our goal is to model the visual appearance of threads
and scratches pointing in the major direction of anisotropy, which we
exploit to improve perception of salient structures. In this section, we
show how the position-dependent anisotropy parameters uw(x),vw(x)
and ul(x),vl(x) can be obtained from the previous eigenanalysis in
conjunction with meaningful user-controlled global parameters. First
of all, we define a global parameter κ that controls the glossiness
of a specular lobe, just like the Blinn–Phong exponent for isotropic
shading. Furthermore, we introduce a global parameter γ for the
degree of anisotropy, which controls how strong the stretching of
anisotropic highlights is for visualization. Since the anisotropy pa-
rameters uw(x),vw(x) and ul(x),vl(x) are specific to the correspond-
ing BRDF, it is difficult to derive BRDF-independent parameters for κ

and γ . Therefore, we also employ BRDF-specific parameters κw,γw
and κl ,γl with their own ranges of values.

4.2.1 Ward

The Ward-specific parameters uw(x) > 0,vw(x) > 0 in Eqns. (10)
and (11) control the glossiness with their magnitude and the degree of
anisotropy with their relative ratio. We introduce the following map-
ping functions to combine the global parameters κw,γw with the ratio
of the eigenvalues, which provides position-dependent information on
the degree of anisotropy:

uw(x) = κw

(
λ2(x)
λ1(x)

)γw

, (32)

vw(x) = κw (33)

with κw > 0 and γw ≥ 0. Figure 4(a) shows plots of Eqn. (32)
with different scaling factors γw. From the eigenanalysis, it follows
that λ1(x) = λ2(x) in isotropic regions. In this case, we also get
isotropic shading with uw(x) = vw(x) = κw and a user can adjust
the glossiness with κw. However, in anisotropic regions, we have
λ1(x) < λ2(x) and the user-controlled parameter γw acts as a scaling
factor that amplifies the prevalent anisotropy for γw > 1 and damps it
for γw < 1. Moreover, for γw = 0, we obtain again isotropic shading.

4.2.2 Lafortune

With Lafortune’s BRDF, the glossiness is directly controlled with the
exponent κl(x), and the anisotropy parameters ul(x),vl(x) implement
different types of reflection [35]. Again, we employ the ratio of the
eigenvalues to exploit position-dependent information on the degree of
anisotropy from the data set and we introduce the following mapping
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Fig. 4. Plots of the anisotropy mapping functions for (a) Ward’s and
(b) Lafortune’s BRDF with different scaling factors γw and γl .

functions with the global parameter γl :

ul(x) = 2
(

1− exp
(

1−
(

λ2(x)
λ1(x)

)γl
))
−1, (34)

vl(x) =−1 (35)

with γl ≥ 0. Figure 4(b) shows plots of Eqn. (34) with different scal-
ing factors γl . In isotropic regions of the data set with λ1(x) = λ2(x),
we obtain ul(x) = vl(x) = −1, which models isotropic shading [35]
and a user can adjust only the glossiness with κl . In anisotropic re-
gions with λ1(x) < λ2(x), the user-controlled parameter γl acts again
as a scaling factor that amplifies or damps anisotropy for visualization,
similar to γw for Ward’s BRDF. In particular, we also obtain isotropic
shading for γl = 0. However, in contrast to Eqn. (32), the useful range
of values is ul(x),vl(x) ∈ [−1,1], but the ratio of the eigenvalues is
not bounded. Therefore, we map the possibly infinite range of values
to the finite interval [−1,1] using an exponential function. Together
with vl(x) =−1, this setting implements similar reflectance character-
istics than Eqns. (32) and (33) for Ward’s BRDF.

4.3 Discussion
Before we provide details on our implementation in the next section,
we briefly discuss our approach with respect to parameters and design.

4.3.1 Parameters
Subsequently, we focus only on parameters that are specific to our
approach of estimating tangent vectors: the radius r of the ambient
sphere, the interval size ε , and the number of samples n.

The radius r of the ambient sphere controls the feature size in the
spatial domain for estimating anisotropy. A small radius implements
a localized exploration of an isosurface, which provides local curva-
ture information close to the point of interest. However, if the radius
becomes too small, additional filtering is necessary to avoid artifacts
due to the discrete nature of the data. In contrast, a large radius also
accounts for large-scale structures and is less susceptible to discretiza-
tion artifacts, but if the radius is chosen too large, anisotropy estima-
tion becomes overly isotropic and furthermore the number of samples
needs to be increased to maintain a constant sample density.

The interval size ε controls the feature size in the data domain for
estimating anisotropy. A small value for ε implements a localized
sampling in data space and complements exploration in the spatial do-
main with a small radius to obtain local anisotropy information for
a sharp isosurface. However, too small interval sizes result in noise
artifacts, which requires either extensive filtering or a high number
of samples to obtain high visual quality. In addition, too few ac-
cepted samples can also result in non-uniform clusters, which falsi-
fies anisotropy estimation, because the spatial position of the samples
directly influences the covariance matrix and its eigenanalysis. In con-
trast, large values for ε sample a wide interval in data space, which is
beneficial for estimating anisotropy of true volumetric structures, not
just for isosurfaces. Furthermore, fewer samples are required and fil-
tering can often be omitted. However, choosing too large values for ε

includes many different features, which results in a loss of anisotropic
details.



Algorithm 1 Estimation of normal vectors and covariance matrices.
Require: radius r, interval size ε , number of samples n, Boolean filter flag f
1: for all voxels x do
2: N = estimateHighQualityNormal(x);
3: storeVectorAtVoxel(N, x);
4: end for
5: for all voxels x do
6: s = sampleScalarField(x);
7: for i = 1 to n do
8: xi = drawUniformSampleSphere(x, r);
9: si = sampleScalarField(xi);

10: if s− ε ≤ si ≤ s+ ε then
11: xp = project3DPointToTangentPlane(xi, N);
12: x2 = transform3DPointTo2DPoint(xp, N);
13: C = add2DPointToCovarianceMatrix(x2, C);
14: end if
15: end for
16: storeSymmetric2x2MatrixAtVoxel(x, C);
17: end for
18: if f == true then
19: for all voxels x do
20: C = readSymmetric2x2MatrixFromVoxel(x);
21: C = filterGaussian(C);
22: storeSymmetric2x2MatrixAtVoxel(C, x);
23: end for
24: end if

4.3.2 Design
In principle, tangent vectors could also be estimated from the principal
curvatures of an isosurface [24]. However, we decided against a pure
local approach for two reasons.

First, estimating principal curvatures requires careful filtering of the
scalar field as well as the first and second derivatives with higher-order
polynomials [24]. However, even for medium-sized data sets, on-the-
fly computation becomes too expensive for interactive visualization.
A common alternative is prefiltering, but then the memory footprint
becomes problematic, because for computing the geometry tensor, it
is necessary to store 3 values per voxel for the gradient and 6 values per
voxel for the symmetric 3×3 Hessian matrix. Although our approach
also takes 3 values per voxel for the gradient, it only requires 3 values
per voxel for the symmetric 2×2 covariance matrix.

The second advantage of our method is that we estimate the
anisotropy for structures that have a finite extent in both the spatial
and data domain, in contrast to derivative-based curvature computa-
tion. While our approach can still estimate local anisotropy for sharp
isosurfaces, it is also possible to focus more on true volumetric struc-
tures on different scales. In this way, local isotropic areas that are
part of a larger anisotropic feature can also be classified as partially
anisotropic and shading becomes less susceptible to artifacts due to
strong variations of anisotropy or a low signal–to–noise ratio.

5 IMPLEMENTATION

Our CUDA-based implementation on the GPU consists of two ma-
jor steps. First, we describe all operations that are independent of
the transfer function and that we perform only once for each data set.
Second, we present our algorithm for DVR, which offers interactive
manipulation of the transfer function, view point, and light sources.

5.1 Transfer Function-Independent Computation
The first part of our implementation computes high-quality normals
and covariance matrices for each voxel as shown in Algorithm 1. We
employ the Sobel operator for gradient estimation and implement the
stages of ambience exploration, projection, covariance matrix compu-
tation, and optional filtering of Section 4.1.2. We store the prefiltered
normals and covariance matrices on two uniform 3D grids, quantiz-
ing all values to 8 bits per channel, which usually provides sufficient
quality for gradient-based shading [46]. It is important to note that we
do not compute and store eigenvectors at this point, because interpo-
lation is difficult and can lead to inconsistent results [23]. Instead, we
interpolate the components of the covariance matrix, similar to tensor
visualization, and perform the eigenanalysis on-the-fly during render-
ing as discussed in the next section.

Algorithm 2 DVR with Ward’s BRDF.
Require: transfer function TF, light sources LS, Henyey-Greenstein phase

function fd,hg, Ward BRDF fs,w, background radiance Lb, glossiness κw,
scaling factor γw, diffuse coefficient kd

1: for all pixels P do
2: L = 0; T = 0;
3: ray = computeEyeRay(P);
4: ω = -ray.direction;
5: while rayCastingNotFinished(ray) do
6: x = getRayPosition(ray);
7: C = sampleSymmetric2x2MatrixFromPosition(x);
8: Gσt = sampleGradientFromPosition(x);
9: Nσt = Gσt / length(Gσt );

10: (λ1, λ2, Λ1, Λ2) = computeEigenanalysis(C);
11: (U , V ) = transformToWorldSpaceAndNormalize(Λ1, Λ2, Nσt );
12: (uw, vw) = computeWardParameters(λ1, λ2, κw, γw);
13: ks = length(Gσt );
14: Li = 0;
15: for all ls ∈ LS do
16: ω ′ = lightDirection(x, ls);
17: f = kd fd,hg(ω

′,ω) + ks fs,w(U,V,Nσt ,uw,vw,ω
′,ω)(ω ′ ·Nσt )+

18: Li = Li + f incomingRadianceFromLightSource(x, ls);
19: end for
20: (L, T ) = composite(x, TF, L, T , Li);
21: end while
22: return T ·Lb +L;
23: end for

5.2 Direct Volume Rendering
For DVR, we perform ray casting from the virtual camera. We employ
3D textures for the data set, prefiltered normals, and covariance matri-
ces. Furthermore, we support optional volumetric shadows by means
of a shadow cache. Our rendering method is summarized in Algo-
rithm 2, shown exemplarily for Ward’s BRDF; for Lafortune’s BRDF
the algorithm follows analogously. In Algorithm 2, we interpolate the
covariance matrix at each ray sample and compute the eigenvalues
λ1,λ2 and eigenvectors Λ1,Λ2, which are then used to compute the
Ward-specific anisotropy parameters uw,vw. The specular coefficient
ks is derived from the gradient magnitude and anisotropic shading is
performed for each light source. Incoming radiance can be either local
or attenuated light for volumetric shadows.

6 RESULTS

We present results with different data sets exhibiting volumetric struc-
tures of different scale and shape to evaluate our approach. In par-
ticular, we demonstrate the benefit of anisotropic highlights com-
pared to isotropic ones. For a quantitative analysis, we implemented
the multi-scale homogeneity-weighted structural dissimilarity (MS-
HWSD) metric by Tao et al. [47]. In their work, this metric was ex-
ploited to optimize light source positions based on the structural sim-
ilarity index [49] and information theory. In our work, we show that
consistently higher scores can be achieved with anisotropic BRDFs
than with isotropic shading for a fixed lighting setup, indicating that
anisotropic BRDFs are well-suited to visually convey structural infor-
mation. All results were obtained with an Intel Core i7 3.4 GHz CPU,
32 GB RAM, and an NVIDIA Titan GPU.

In Figure 5, we first compare our method of estimating anisotropy
with the curvature-based approach by Kindlmann et al. [24]. From dif-
ferential geometry, it is known that the principal curvature directions
form an orthonormal basis in the tangent plane. Therefore, we com-
pute the principal curvatures at each shading point and use them as in-
put for Ward’s BRDF. In an effort to provide a comparable implemen-
tation in terms of rendering quality, performance, and memory con-
sumption, we precompute and filter the Hessian matrix on a 3D grid,
similar to our approach. At rendering, the geometry tensor is com-
puted from the filtered gradient vector and Hessian matrix. The eigen-
values and eigenvectors of the geometry tensor are computed on-the-
fly, which correspond to the principal curvature magnitudes and direc-
tions, respectively. In Figure 5, we visualize a set of closely packed el-
lipsoids with decreasing anisotropy from the center toward the bound-
aries using a data set resolution of 250× 92× 512 voxels. In Fig-
ure 5(a), anisotropy is estimated from the principal curvatures, which
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Fig. 5. Visualization of a set of ellipsoids. The anisotropy decreases
from the center toward the boundaries and is estimated from (a) princi-
pal curvatures [24] and with our technique using a (b) small and (c) large
radius. The red inset shows a close-up of one specular highlight. The
green inset shows the data set from a far distance (upscaled images).

highlights the vertical shape of the individual ellipsoids. For a direct
comparison, we estimate anisotropy with our method in Figure 5(b)
by using a small radius of r = 3 voxels, which leads to a very similar
visualization, but the close-up views reveal that the curvature-based
method is susceptible to artifacts close to the transitions of the ellip-
soids, in contrast to our method. An advantage of the curvature-based
approach is that the precomputation is faster with 465 ms compared
to our method with 985 ms to achieve a similar quality. However,
memory consumption is higher with 67.4 MB compared to 44.9 MB
and rendering is also slower with 69 fps compared to 81 fps with our
technique, because a symmetric 3× 3 matrix needs to be stored and
accessed, in contrast to a symmetric 2×2 matrix in our case.

Common to both visualizations is that anisotropy is estimated lo-
cally, which can lead to disturbing visual patterns, for example, when
the data set is noisy or when the features are small compared to the
image resolution. The green insets in Figures 5(a) and (b) show alias-
ing patterns when the camera is zoomed-out. A unique aspect of
our method is that we can increase the ambient radius to estimate
anisotropy on a larger scale to avoid these issues or to highlight the
more salient structures of a data set as shown in Figure 5(c) where we
increase the radius to r = 200 voxels. The specular highlight now vi-
sually emphasizes the overall structure of the data set, instead of the
individual ellipsoids. Furthermore, when zooming out, aliasing is sig-
nificantly reduced. This simple example demonstrates that our tech-
nique is capable to reliably estimate anisotropy on different scales with
comparable resource consumption than the curvature-based approach.
In all subsequent results, we employ our method.

In Figure 6, we study the parameters for estimating the covariance
matrix of Section 4.1.2: the ambient radius r, the interval size ε , and
the number of samples n. For simplicity, we created an artificial data
set of an ellipsoid with a resolution of 5123 voxels. In Figures 6(a)
and (b), we show two reference results with large and moderate scal-
ing factors γw and γl . In both images, the anisotropy of the ellipsoid
is visually mapped to the prolated specular highlights and for smaller
values of γw and γl , the stretching is less pronounced. Since the el-
lipsoid covers almost the entire volume, we use a rather large radius
of r = 200 voxels and a small interval size of ε = 0.01, assuming
s ∈ [0,1]. In this way, anisotropy estimation is focused on isosurfaces,
which requires n = 500 samples per voxel for high quality.

In Figures 6(c) and (d), we decreased the ambient radius to r =
1 voxel and anisotropy estimation is strongly localized in the spa-
tial domain, similar to curvature computation [24]. The large-scale
anisotropy of the ellipsoid can be hardly determined as the surface
is almost isotropic on this small scale. However, in Figure 6(c), we
still enforce high scaling factors γw and γl , but this leads to noticeable
artifacts. In Figure 6(d), we decrease γw and γl until the artifacts disap-
pear, but the specular highlights become almost isotropic as opposed
to the reference in Figure 6(b).

In Figures 6(e) and (f), we use again the settings of the reference in
Figure 6(a), but we increase the interval size to ε = 0.5. In this way,
anisotropy estimation is focused on large volumetric features in data
space. However, the large range of values now also covers features that
are not part of the ellipsoid, which leads to inconsistent anisotropy
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Fig. 6. Visualization of an ellipsoid. Reference visualizations with
(a) strong and (b) moderate scaling factors. A too small radius cannot
detect the anisotropy and leads to either (c) artifacts with strong scaling
or (d) almost isotropic highlight with low scaling. A too large interval size
leads either to (e) inconsistent anisotropy estimation with strong scaling
or (f) almost isotropic highlight with low scaling. Too few samples lead
either to (g) noise artifacts without filtering or (h) unreliable anisotropy
estimation with a large filter size.
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Fig. 7. Visualization of the test signal by Marschner and Lobb [33].
(a) Isotropic shading with Blinn–Phong’s BRDF. Anisotropic shading with
Ward’s and Lafortune’s BRDF using (b) moderate scaling factors and
(c) strong scaling factors for stretching the highlights.

estimation in Figure 6(e). In Figure 6(f), the inconsistency can be
resolved by decreasing the scaling factors, but the highlights become
isotropic. Although only 50 samples per voxel are necessary for noise-
free results, this example demonstrates that the interval size needs to
be chosen sufficiently small to faithfully detect anisotropy. For all
further results of this paper, we employ a default value of ε = 0.05.

In Figures 6(g) and (h), we use again the settings of the reference
in Figure 6(a), but we decrease the number of samples to n = 10. In
Figure 6(g), we do not filter ( f = 1) the covariance matrices, which
leads to visible noise artifacts. In Figure 6(h), a large kernel of f = 21
voxels is employed for low-pass filtering. However, the specular high-
light still exhibits low-frequency noise and its overall shape is irregu-
lar. We are omitting results for large radii, small interval sizes, and a
high number of samples in Figure 6, as they do not provide additional
insight.

In Figure 7, we study the impact of γw and γl for scaling the
anisotropy for visualization using the test signal by Marschner and
Lobb [33]. Although the ratio of the eigenvalues already provides a
tool to automatically measure anisotropy, the magnitude of this ratio
is often not adequate for direct use with a BRDF. Therefore, γw and
γl act as global parameters for remapping the ratio to a more suit-
able range. For comparison, we show isotropic shading with Blinn–
Phong’s BRDF in Figure 7(a) and the magnified region exhibits the
typical band structures of the test signal. Figure 7(b) shows the same
setup with Ward’s and Lafortune’s BRDF and moderate scaling factors
of γw = γl = 10. The band structures are already better visible than
with isotropic highlights. By further increasing the scaling factors to
γw = γl = 60 in Figure 7(c), these features become even more salient.
The difference between Ward’s and Lafortune’s BRDF is very small,
but the comparison with Blinn–Phong’s BRDF shows the benefit of
anisotropic shading.
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Fig. 8. Visualization of the Engine data set. (a) Isotropic shading with
Blinn–Phong’s BRDF. (b) Anisotropic shading with Lafortune’s BRDF.

Our first real-world data set in Figure 1 shows one time step of a
flow simulation with a resolution of 5293 voxels using the λ2 vortex
criterion, a derived scalar field widely used for flow visualization of
vortices. The high number of tubular structures and their complex
spatial arrangement pose challenges for visualization. In Figure 1(a),
we show the data set without any specular highlights using only the
Henyey-Greenstein phase function for volumetric scattering. In Fig-
ure 1(b), isotropic highlights are added according to Blinn–Phong’s
BRDF. Although the specular reflections contribute visual aids to con-
vey the surface structures, their sparsity and non-uniform appearance
can be misleading. In Figure 1(c), we employ our approach with
anisotropic shading using Lafortune’s BRDF with an ambient radius
of r = 10 voxels and n = 100 samples per voxel. In this case, the spec-
ular highlights are aligned with the tubular structures and they provide
more visual cues due to their higher density and uniformity.

Figure 8 shows visualizations of the Engine data set with a resolu-
tion of 256× 256× 110 voxels. The data set exhibits many isotropic
surfaces combined with sharp edges and curved concavities. The high
transparency and the faint shadows make it difficult to visually con-
vey salient structures of the engine block. In Figure 8(a), we em-
ploy isotropic highlights using Blinn–Phong’s BRDF with high glossi-
ness κ = 80. However, the highlights provide only few additional cues
to help perceive the shape of the engine. In Figure 8(b), we employ
a radius of r = 7 voxels and n = 50 samples per voxel to estimate
anisotropy using Lafortune’s BRDF with the same high glossiness
κl = 80. Furthermore, we use a moderate scaling factor of γl = 10
for visualization, which is sufficient to clearly accentuate the gaskets
or the edges of the engine block as shown in the insets.

In Figure 9, the Mecanix data set is visualized with a resolution
of 256× 256× 302 voxels and the transfer function maps the skele-
ton to high opacity, while contextual structures of the torso are semi-
transparent. In Figure 9(a), isotropic specular highlights due to Blinn–
Phong’s BRDF are employed with low glossiness κ = 10. In contrast,
Figure 9(b) shows the same setup with our anisotropic shading us-
ing Ward’s BRDF and visually comparable glossiness κw = 0.2. Fur-
thermore, we employ a scaling factor of γw = 40 for visualization.
Compared to isotropic shading, the bone structures like the ribs and
the pelvis are visually more salient, especially in the areas where the
semi-transparent tissue partially occludes them.

Figure 10 shows the Manix data set with a resolution of 5123 vox-
els. In contrast to the previous data set, features of different scales are
visualized, like parts of the skeleton, muscular tissue, and fine-veined
blood vessels. In Figures 10(a) and (b), we employ high glossiness
κ = 30 and κl = 30 for Blinn–Phong’s and Lafortune’s BRDFs, re-
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Fig. 9. Visualization of the Mecanix data set. (a) Isotropic shading with
Blinn–Phong’s BRDF. (b) Anisotropic shading with Ward’s BRDF.

spectively. For anisotropic shading, we use a radius of r = 30 voxels, a
number of n= 100 samples, and a scaling factor of γl = 50. The bluish
region highlights parts of the cheek, exhibiting only weak anisotropy
due to the almost uniform curvature. Our approach in Figure 10(b)
automatically detects this local quasi-isotropic feature and its visual-
ization is similar to isotropic shading in Figure 10(a). In contrast, the
yellowish and greenish regions highlight areas of strong anisotropy,
where our approach better reveals the fine structures of the auricle or
the blood vessels. On a larger scale, the bone structures of the eye
socket or the clavicle are also more salient. In Figures 10(c) and (d),
we show the same comparison, but with low glossiness κ = 5 and
κl = 5 for both BRDFs. Qualitatively, we observe similar findings: Al-
though the difference between isotropic and anisotropic shading is less
pronounced, the depiction of anisotropic structures is still improved.

In Table 1, we summarize performance measurements and memory
consumptions. Depending on the data set, it is sufficient to employ
0.5 – 1.0× the resolution of the data set for the normals and the covari-
ance matrices, as shown in the fourth column. We can see that memory
consumption due to the covariance matrices is just as high as for the
prefiltered normals. The computation time for the covariance matri-
ces depends on the number of samples, which in turn usually depends
on the radius and the complexity of the features. However, in simple
cases like the ellipsoid, even very large radii do not require an ex-
cessive number of samples to obtain high quality. Rendering without
any specular highlights always achieves the highest frame rates, but
at the cost of few visual cues. Rendering with Blinn–Phong’s BRDF
requires additional normal estimation, which is consistently slower,
but the highlights also provide more structural information on shape.
Anisotropic shading with Ward’s and Lafortune’s BRDF requires ad-
ditional access to the covariance matrices, but we think that the gained
benefit in our visual results compensates the slower performance in
many cases. Finally, changing the transfer function or moving the light
sources can be performed interactively in all cases and we do not pro-
vide additional measurements, because the only delay is due to shadow
recomputation; however, this is not specific to our contribution.

In Table 2, we complement our performance measurements with
scores of the MS-HWSD metric, focusing on results with high glossi-
ness and high scaling factors. We employ volumetric scattering with-
out any specular highlights as reference to compute the scores. The
small absolute values of the scores are due to the fact that additional
specular highlights usually change only a small number of pixels
of the full image, especially for very high values of the glossiness
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Fig. 10. Visualization of the Manix data. Shading with high glossiness using (a) Blinn–Phong’s isotropic BRDF and (b) Lafortune’s anisotropic
BRDF. Shading with low glossiness using (c) Blinn–Phong’s isotropic BRDF and (d) Lafortune’s anisotropic BRDF.

Table 1. Overview of performance and memory consumption using a viewport size of 10242 pixels and early ray termination. The computation times
for the normals N and the covariance matrices C are not included in the rendering performance. The resolution factors for N and C in the fourth
column are with respect to the resolution of the data set. The interval size is ε = 0.05 for all results.

Data Set Fig. Res. Data Res. N,C n r N C Rendering [fps]
Mem. [MB] Time [ms] Mem. [MB] Time [ms] None Bl.–Ph. Ward Lafortune

Vortex 1 529×529×529 1/2 100 10 53.2 6 53.2 1777 38 31 26 27
Ellipsoid 6 512×512×512 1/2 500 200 48.0 5 48.0 4575 71 62 50 50
Ma./Lobb 7 512×512×512 3/4 100 20 162.0 14 162.0 3775 83 73 52 54

Engine 8 256×256×110 1 50 7 20.6 2 20.6 627 97 88 68 69
Mecanix 9 256×256×302 1 100 30 56.6 6 56.6 2149 168 115 59 59
Manix 10 512×512×512 3/4 100 30 162.0 14 162.0 3609 104 80 63 64

as for the Engine data set, for example. In particular, Table 2 re-
veals that anisotropic shading consistently leads to higher scores than
isotropic shading with Blinn–Phong’s BRDF, and the difference be-
tween Ward’s and Lafortune’s BRDF is negligible for our purposes.
While in principle, even higher scores could be obtained by simply
adding arbitrary structural information like noise to an image, our ren-
dered results show that the additional cues due to our method visualize
meaningful structures of a data set.

7 CONCLUSION

We have introduced a novel technique for anisotropic shading in DVR
to improve the perception of complex surface-like structures. Com-
pared to common isotropic shading, our anisotropic specular high-
lights are aligned with the anisotropy of the volumetric features, pro-
viding meaningful visual representatives to convey shape. Anisotropy
is estimated solely from the data set, independent of the transfer func-
tion, which offers interactive data exploration without requiring re-
computation. The memory footprint of our approach is twice as high
as using prefiltered gradients with isotropic shading; however, we
think that the additional benefit outweighs the higher resource con-
sumption in many cases.

We have shown experimentally that our anisotropy estimation
method with a small radius is closely related to the principal curva-
ture directions. The advantage of our approach is, however, that the
radius can be increased to avoid disturbing visual patterns or to high-
light the more salient features of a data set. We have shown that the
structural information is increased with anisotropic shading according
to the MS-HWSD metric, but future work is necessary to investigate
the perceptual benefits in more detail, for example, with a user-study
like the one by Lindemann and Ropinski [30].

Table 2. Overview of the MS-HWSD scores using high glossiness and
high scaling factors. All scores are with respect to volumetric scattering
without any specular highlights.
PPPPPPBRDF

Data Set
Vortex Ellipsoid Ma./Lobb Engine Mecanix Manix

Blinn–Phong 0.0019 0.0565 0.0044 0.0004 0.0036 0.0033
Ward 0.0097 0.0966 0.0193 0.0041 0.0174 0.0109

Lafortune 0.0114 0.0961 0.0194 0.0040 0.0134 0.0107

The main limitation of our approach is the comparably long com-
putation time for exploring the ambient region of a point to estimate
anisotropy, which limits its use for quickly exploring time-dependent
data sets. Here, future work could study more advanced sampling
strategies to accelerate computation, for example, by deterministically
exploring the isosurface at a given sample point. However, care has to
be taken that a regular sampling pattern does not introduce a system-
atic bias in the anisotropy estimation.

Another drawback of our method is the number of parameters
and the exploration of their values. Although we achieved good re-
sults with a constant interval size, the radius and number of samples
strongly depend on the size of the features of interest. Future work
could investigate algorithms that explore the different scales of a data
set to automatically determine reasonable radii and sample densities.
In particular, with an automatic algorithm, these parameters could be
spatially adapted to implement an efficient and robust technique.
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