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3.1.2 Multiresolution Blending with a Laplacian Pyramid

Burt and Adelson [78] made a key observation about blending across a seam, rooted
in a frequency-domain interpretation of the images to be combined. The idea is sim-
ple: low-frequency components (i.e., smooth, gradual intensity variations) should be
blended across wide transition regions, while high-frequency components (i.e., edges
and regions with fine detail) should be blended across narrow transition regions.
These goals can be easily, simultaneously accomplished using a Laplacian pyramid,
a common multiresolution representation for images. In this section, we assume
that the images are grayscale, and that for color images each channel is processed
independently and recombined.

For a given image I , the first step is to blur it at different scales, by successively
filtering it with a Gaussian (or more generally, low-pass) kernel. At each step, the res-
olution of the image is halved in both dimensions, so that successive images appear
as smaller, blurrier versions of the original. The top row of Figure 3.4 illustrates sev-
eral steps of this process, which is called a Gaussian pyramid. That is, we create a
hierarchy of images given by

Gi = (K ∗ Gi−1)↓2, i = 1, . . . ,N (3.2)

where ∗ indicates two-dimensional convolution, ↓ 2 indicates downsampling by 2
in both dimensions, and G0 = I , the original image. K is an approximate Gaussian
kernel, or a low-pass filter whose elements sum to 1, such as

K = [−0.05, 0.25, 0.6, 0.25, −0.05]⊤ [−0.05, 0.25, 0.6, 0.25, −0.05] (3.3)

For compositing, we’re interested in the edges that are significant at every scale,
which can be obtained by taking the difference of Gaussians at each scale:

Li = Gi − (K ∗ Gi), i = 0, . . . ,N − 1 (3.4)

The images Li form what is called a Laplacian pyramid, since the shape of the two-
dimensional Laplacian operator (also known as the “Mexican hat” function) is similar
to a difference of Gaussians at different scales (we’ll discuss this property more in
Section 4.1.4). As illustrated in the bottom row of Figure 3.4, each image in the Lapla-
cian pyramid can be viewed as a bandpass image at a different scale. The smallest
image LN in the pyramid is defined to be a small, highly blurred version of the original
image, given by GN , while the other images contain edges prevalent at different image
scales (for example, L0 contains the finest-detail edges). Therefore, we can write the
original image as the sum of the images of the pyramid:

I =
N∑

i=0

Li↑ (3.5)

Gaussian Kernel (blurring kernel)
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Figure 3.4. The top row illustrates the Gaussian pyramid of an image I = G0, generated by
filtering with the matrix in Equation (3.3) and downsampling by 2 at each step. Each image is
a smaller, blurrier version of its predecessor. The bottom row illustrates the Laplacian pyramid
for the image I , generated by successive differencing of the images in the top row according to
Equation (3.4). Each Laplacian image contains the edges at successively coarser scales.

where ↑ indicates the images have been upsampled and interpolated to the original
image resolution before summing them.

To compose a source image S onto a target image T using Burt and Adelson’s
approach, we first compute the Laplacian pyramids LS and LT for both images. We
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where ↑ indicates the images have been upsampled and interpolated to the original
image resolution before summing them.

To compose a source image S onto a target image T using Burt and Adelson’s
approach, we first compute the Laplacian pyramids LS and LT for both images. We

G0 ⇤K
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where ↑ indicates the images have been upsampled and interpolated to the original
image resolution before summing them.

To compose a source image S onto a target image T using Burt and Adelson’s
approach, we first compute the Laplacian pyramids LS and LT for both images. We

G0 ⇤K
G1 = (G0 ⇤K)#
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K = [−0.05, 0.25, 0.6, 0.25, −0.05]⊤ [−0.05, 0.25, 0.6, 0.25, −0.05] (3.3)

For compositing, we’re interested in the edges that are significant at every scale,
which can be obtained by taking the difference of Gaussians at each scale:

Li = Gi − (K ∗ Gi), i = 0, . . . ,N − 1 (3.4)

The images Li form what is called a Laplacian pyramid, since the shape of the two-
dimensional Laplacian operator (also known as the “Mexican hat” function) is similar
to a difference of Gaussians at different scales (we’ll discuss this property more in
Section 4.1.4). As illustrated in the bottom row of Figure 3.4, each image in the Lapla-
cian pyramid can be viewed as a bandpass image at a different scale. The smallest
image LN in the pyramid is defined to be a small, highly blurred version of the original
image, given by GN , while the other images contain edges prevalent at different image
scales (for example, L0 contains the finest-detail edges). Therefore, we can write the
original image as the sum of the images of the pyramid:

I =
N∑

i=0

Li↑ (3.5)
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Figure 3.4. The top row illustrates the Gaussian pyramid of an image I = G0, generated by
filtering with the matrix in Equation (3.3) and downsampling by 2 at each step. Each image is
a smaller, blurrier version of its predecessor. The bottom row illustrates the Laplacian pyramid
for the image I , generated by successive differencing of the images in the top row according to
Equation (3.4). Each Laplacian image contains the edges at successively coarser scales.

where ↑ indicates the images have been upsampled and interpolated to the original
image resolution before summing them.

To compose a source image S onto a target image T using Burt and Adelson’s
approach, we first compute the Laplacian pyramids LS and LT for both images. We

G0 ⇤K
G1 = (G0 ⇤K)#
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3.1.2 Multiresolution Blending with a Laplacian Pyramid

Burt and Adelson [78] made a key observation about blending across a seam, rooted
in a frequency-domain interpretation of the images to be combined. The idea is sim-
ple: low-frequency components (i.e., smooth, gradual intensity variations) should be
blended across wide transition regions, while high-frequency components (i.e., edges
and regions with fine detail) should be blended across narrow transition regions.
These goals can be easily, simultaneously accomplished using a Laplacian pyramid,
a common multiresolution representation for images. In this section, we assume
that the images are grayscale, and that for color images each channel is processed
independently and recombined.

For a given image I , the first step is to blur it at different scales, by successively
filtering it with a Gaussian (or more generally, low-pass) kernel. At each step, the res-
olution of the image is halved in both dimensions, so that successive images appear
as smaller, blurrier versions of the original. The top row of Figure 3.4 illustrates sev-
eral steps of this process, which is called a Gaussian pyramid. That is, we create a
hierarchy of images given by

Gi = (K ∗ Gi−1)↓2, i = 1, . . . ,N (3.2)
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which can be obtained by taking the difference of Gaussians at each scale:
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The images Li form what is called a Laplacian pyramid, since the shape of the two-
dimensional Laplacian operator (also known as the “Mexican hat” function) is similar
to a difference of Gaussians at different scales (we’ll discuss this property more in
Section 4.1.4). As illustrated in the bottom row of Figure 3.4, each image in the Lapla-
cian pyramid can be viewed as a bandpass image at a different scale. The smallest
image LN in the pyramid is defined to be a small, highly blurred version of the original
image, given by GN , while the other images contain edges prevalent at different image
scales (for example, L0 contains the finest-detail edges). Therefore, we can write the
original image as the sum of the images of the pyramid:

I =
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i=0
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Figure 3.4. The top row illustrates the Gaussian pyramid of an image I = G0, generated by
filtering with the matrix in Equation (3.3) and downsampling by 2 at each step. Each image is
a smaller, blurrier version of its predecessor. The bottom row illustrates the Laplacian pyramid
for the image I , generated by successive differencing of the images in the top row according to
Equation (3.4). Each Laplacian image contains the edges at successively coarser scales.
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also assume we have a binary mask M specifying the desired boundary, so that pixels
inside S have M = 1 and pixels inside T have M = 0, and compute a Gaussian pyramid
G for this mask. Then we compute a Laplacian pyramid {LI } for the composite image
as follows:

LI
i (x,y) = Gi(x,y)LS

i (x,y)+ (1 − Gi(x,y))LT
i (x,y), i = 0, . . . ,N (3.6)

We sum the Laplacian components according to Equation (3.5) to get the new image.
Effectively, the transition region is wider at lower spatial frequencies and narrower
at high spatial frequencies, producing a more natural transition between the source
and target. Figure 3.5 illustrates the process for the same images as in Figure 3.3; note
the higher quality of the composite and the relative lack of artifacts.

The general approach of a multiresolution filter-bank decomposition applies to
other operators besides the Laplacian. For example, a steerable pyramid [453] fur-
ther decomposes each bandpass image into the sum of orientation bands, which
can be used to selectively enhance or de-emphasize components at different ori-
entations. Another important alternative is a discrete wavelet transform (e.g.,
[277, 278]), which also represents images at different scales and can be computed very
efficiently.

(a) (b)

(c) (d) (e) (f)

(g)

Figure 3.5. Laplacian ImageCompositing. (a) The target image. (b) The source image, indicating
the boundary of the compositing region. (c) Several levels of the Laplacian pyramid for the target
image. (d) Several levels of the Laplacian pyramid for the source image. (e) Several levels of the
Gaussian pyramid for the compositing mask. (f) The combination of the source and target at each
level according to Equation (3.6). (g) The final composite.
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the boundary of the compositing region. (c) Several levels of the Laplacian pyramid for the target
image. (d) Several levels of the Laplacian pyramid for the source image. (e) Several levels of the
Gaussian pyramid for the compositing mask. (f) The combination of the source and target at each
level according to Equation (3.6). (g) The final composite.
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(a)

(b)
(c)

Figure 3.7. (a) The target image and (b) the source image, indicating the region ! to be com-
posited. (c) Laplacian pyramid blending fails when the source and target regions’ colors differ
by too much.

that we want to solve

min
I (x,y)∈!

∫∫

!

∥∇I (x,y)−∇S(x,y)∥2 dx dy

s.t . I (x,y) = T (x,y) on ∂!

(3.7)

If we denote the integrand as

F (x,y) = ∥∇I (x,y)−∇S(x,y)∥2 =
(

∂I
∂x

− ∂S
∂x

)2

+
(

∂I
∂y

− ∂S
∂y

)2

(3.8)

then the calculus of variations implies that the I (x,y) that solves Equation (3.7) is a
solution of the Euler-Lagrange equation:

∂F
∂I

− d
dx

∂F
∂Ix

− d
dy

∂F
∂Iy

= 0 in ! (3.9)

Plugging Equation (3.8) into Equation (3.9) yields1

2

(
∂2I
∂x2 − ∂2S

∂x2

)

+ 2

(
∂2I
∂y2 − ∂2S

∂y2

)

= 0 in ! (3.10)

or more simply,

∇2I (x,y) = ∇2S(x,y) in ! (3.11)

s.t . I (x,y) = T (x,y) on ∂! (3.12)

1 Note that the term ∂F
∂I in Equation (3.9) equates to 0 in this case, since the partial is treated with

respect to the symbol I , and I doesn’t appear by itself in Equation (3.8).
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However, none of these pyramid-style methods are well suited to the situation
when the source and target colors are not already well matched, as we’ll see in the
next section.

3.2 POISSON IMAGE EDITING

An appealing approach to compositing, pioneered by Pérez et al. [364], seam-
lessly merges the source region into the target image using an application of the
Poisson equation. To understand the Poisson compositing technique, we need to
define several concepts from continuous partial differential equations and vector
calculus, which we then translate into the discrete world to apply to digital images.

3.2.1 The Basic Idea

In place of a binary compositing mask M , we assume that the source image S is
defined over a closed region!; the boundary of this region is denoted as ∂!. Figure 3.6
illustrates these terms. The target image T is assumed to be defined over some
rectangular region in R2.

Formally, the composite image we want to construct, I (x,y), exactly agrees with
T (x,y) outside of !, and should “look like” S(x,y) inside !. The problem is that if we
directly place the source region on top of T and blend across the edge, for example
using the Laplacian pyramid approach, the result can be unacceptable due to color
mismatches, as illustrated in Figure 3.7.

What can we do to make the interior of ! “look like” the source, but avoid the color
mismatch problem? The key idea is to transfer the edges of the source image into !,
and then compute colors inside the region that are as harmonious as possible with
the pixels from T surrounding !. That is, we want the gradient of the desired image,
∇I (x,y), inside! to be as close as possible to∇S(x,y), subject to the constraint that the
result must match the existing values of T (x,y) on the boundary ∂!. This approach is
generally known as gradient-domain compositing. In continuous terms, this means

Ω

∂Ω

Source image

Figure 3.6. Terminology for Poisson image editing.
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Figure 3.7. (a) The target image and (b) the source image, indicating the region ! to be com-
posited. (c) Laplacian pyramid blending fails when the source and target regions’ colors differ
by too much.
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then the calculus of variations implies that the I (x,y) that solves Equation (3.7) is a
solution of the Euler-Lagrange equation:

∂F
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= 0 in ! (3.9)

Plugging Equation (3.8) into Equation (3.9) yields1
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∂2I
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1 Note that the term ∂F
∂I in Equation (3.9) equates to 0 in this case, since the partial is treated with

respect to the symbol I , and I doesn’t appear by itself in Equation (3.8).



IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Problem Formulation

3.2. Poisson Image Editing 63

(a)

(b)
(c)

Figure 3.7. (a) The target image and (b) the source image, indicating the region ! to be com-
posited. (c) Laplacian pyramid blending fails when the source and target regions’ colors differ
by too much.
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Each pixel p = (x,y) ∈ ! generates a linear equation in the unknown values of
I (x,y). There are two cases, depending on the 4-neighborhood of p (denoted N(p)):

1. N(p) ⊂ !. In this case — such as pixel A in Figure 3.8 — the neighborhood of
the pixel is fully contained in !. There are no boundary conditions and we use
the usual approximations of the Laplacian:

I (x + 1,y)+ I (x − 1,y)+ I (x,y + 1)+ I (x,y − 1)− 4I (x,y)

= S(x + 1,y)+ S(x − 1,y)+ S(x,y + 1)+ S(x,y − 1)− 4S(x,y) (3.14)

2. N(p) ̸⊂ !. In this case — such as pixel B in Figure 3.8 — the pixel is on the edge
of the source region, and the estimate of the Laplacian includes pixels from
the target that are specified by the boundary condition:

⎛

⎝
∑

q∈N (p)∩!

I (q)

⎞

⎠+

⎛

⎝
∑

q∈N (p)∩∂!

T (q)

⎞

⎠− 4I (x,y)

= S(x + 1,y)+ S(x − 1,y)+ S(x,y + 1)+ S(x,y − 1)− 4S(x,y) (3.15)

Typically, the region ! is well inside the target image (i.e., surrounded by a
healthy border of target pixels). However, if ! runs all the way to the image bor-
der, Equation (3.14) and Equation (3.15) need to be modified to avoid querying pixel
values outside the image. For example, if the upper left-hand corner (1,1) ∈ !, we
would modify Equation (3.14) to

I (2,1)+ I (1,2)− 2I (1,1) = S(2,1)+ S(1,2)− 2S(1,1) (3.16)

Collecting together all the equations for each p ∈ ! results in a large, sparse linear
system. There are as many unknowns as pixels in !, but at most five nonzero elements
per row, with a regular structure on where these elements occur.4

Solving the Poisson equation for the example images in Figure 3.7 results in
the improved composite in Figure 3.9. As with the Laplacian pyramid, the Poisson
equation was applied to each color channel independently. We can see that the over-
all colors of the target image merge naturally into the source region, while keeping
the sharp detail of the source region intact.

We can obtain a slightly different interpretation of Equations (3.11)–(3.12) by
defining E(x,y) = I (x,y)− S(x,y) and rearranging:

∇2E(x,y) = 0 in ! (3.17)

s.t . E(x,y) = T (x,y)− S(x,y) on ∂! (3.18)

That is, E(x,y) is a “correction” that we add to the source pixels to get the final image
pixels. We can think of E(x,y) as a smooth membrane that interpolates the samples
of the difference between the target and source pixels around the boundary of !.
Now Equation (3.17) is a Laplace equation, which implies that the solution E(x,y) is
a harmonic function. Once we compute E(x,y), we recover I (x,y) = S(x,y)+E(x,y).

4 In fact, the same kinds of systems occurred when we considered the matting problem in Sections
2.4 and 2.6.

64 Chapter 3. Image Compositing and Editing

A

B

Figure 3.8. Discrete sets required for solving the Poisson equation using digital images. A small
image region is shown. The lightly shaded squares comprise !; the darker-shaded squares
comprise ∂!.

where we have used the common notation of ∇2I = ∂2I
∂x2 + ∂2I

∂y2 for the Laplacian
operator.

An equation of the form (3.11) (with a generic right-hand side) is called a Poisson
equation, and a constraint of the form (3.12) is called a Dirichlet boundary condition.
If the right-hand side of Equation (3.11) is zero, it is called a Laplace equation2; if the
right-hand side of Equation (3.12) is zero, it is called a Neumann boundary condition.

Before we discuss how the Poisson equation is solved in practice, we mention
an important generalization. In Equation (3.11), we assumed that the Laplacian
of the new image was equal to the Laplacian of another image (i.e., the source)
inside !. However, the technique is more powerful if we minimize the difference
between the Laplacian of the new image and some arbitrary guidance vector field
(Sx(x,y),Sy(x,y)) at every pixel (x,y). The distinction is that the guidance vector field
need not arise by taking the gradient of some original image (in which case it is called a
non-conservative field). The Poisson equation in Equation (3.11) slightly changes to

∇2I (x,y) = div

[
Sx(x,y)

Sy(x,y)

]

= ∂Sx

∂x
+ ∂Sy

∂y
in ! (3.13)

where div represents the divergence of an arbitrary vector field.3

To solve the Poisson equation for a real-world pixellated image, we create a discrete
version of Equations (3.11)–(3.12). As illustrated in Figure 3.8, ! is a user-defined
collection of pixels (i.e., the pixels where M = 1 in the previous section) and ∂! is the
set of pixels not in ! that have one of their 4-neighbors in !. The source image S must
at least be defined on ! plus a one-pixel-wide dilation of !.

2 The Laplace equation is also sometimes known as the heat equation or diffusion equation.
3 For a readable refresher on vector calculus and derivatives, see the book by Schey [427].
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Each pixel p = (x,y) ∈ ! generates a linear equation in the unknown values of
I (x,y). There are two cases, depending on the 4-neighborhood of p (denoted N(p)):

1. N(p) ⊂ !. In this case — such as pixel A in Figure 3.8 — the neighborhood of
the pixel is fully contained in !. There are no boundary conditions and we use
the usual approximations of the Laplacian:

I (x + 1,y)+ I (x − 1,y)+ I (x,y + 1)+ I (x,y − 1)− 4I (x,y)

= S(x + 1,y)+ S(x − 1,y)+ S(x,y + 1)+ S(x,y − 1)− 4S(x,y) (3.14)

2. N(p) ̸⊂ !. In this case — such as pixel B in Figure 3.8 — the pixel is on the edge
of the source region, and the estimate of the Laplacian includes pixels from
the target that are specified by the boundary condition:

⎛

⎝
∑

q∈N (p)∩!

I (q)

⎞

⎠+

⎛

⎝
∑

q∈N (p)∩∂!

T (q)

⎞

⎠− 4I (x,y)

= S(x + 1,y)+ S(x − 1,y)+ S(x,y + 1)+ S(x,y − 1)− 4S(x,y) (3.15)

Typically, the region ! is well inside the target image (i.e., surrounded by a
healthy border of target pixels). However, if ! runs all the way to the image bor-
der, Equation (3.14) and Equation (3.15) need to be modified to avoid querying pixel
values outside the image. For example, if the upper left-hand corner (1,1) ∈ !, we
would modify Equation (3.14) to

I (2,1)+ I (1,2)− 2I (1,1) = S(2,1)+ S(1,2)− 2S(1,1) (3.16)

Collecting together all the equations for each p ∈ ! results in a large, sparse linear
system. There are as many unknowns as pixels in !, but at most five nonzero elements
per row, with a regular structure on where these elements occur.4

Solving the Poisson equation for the example images in Figure 3.7 results in
the improved composite in Figure 3.9. As with the Laplacian pyramid, the Poisson
equation was applied to each color channel independently. We can see that the over-
all colors of the target image merge naturally into the source region, while keeping
the sharp detail of the source region intact.

We can obtain a slightly different interpretation of Equations (3.11)–(3.12) by
defining E(x,y) = I (x,y)− S(x,y) and rearranging:

∇2E(x,y) = 0 in ! (3.17)

s.t . E(x,y) = T (x,y)− S(x,y) on ∂! (3.18)

That is, E(x,y) is a “correction” that we add to the source pixels to get the final image
pixels. We can think of E(x,y) as a smooth membrane that interpolates the samples
of the difference between the target and source pixels around the boundary of !.
Now Equation (3.17) is a Laplace equation, which implies that the solution E(x,y) is
a harmonic function. Once we compute E(x,y), we recover I (x,y) = S(x,y)+E(x,y).

4 In fact, the same kinds of systems occurred when we considered the matting problem in Sections
2.4 and 2.6.
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Figure 3.9. Successful image composition using the Poisson equation.

(a) (b) (c)

Figure 3.10. (a) The region ! includes some key features of the target image. (b) Poisson image
compositing without modification creates unacceptable visual artifacts; the mountain’s color is
smudged into the source region. (c) Using mixed gradients to preserve the target edges in ! is
a big improvement.

We’ve assumed that the pixels from the source image entirely overwrite whatever
pixels used to be in the same place in the target image. However, in some cases, it
may be appropriate for the original target pixels to “show through.” For example, we
may want to maintain some of the texture of the target image, or give the sense that
the source pixels are slightly transparent. In this case, we could use a guidance vector
field given by a mixture of the source and target gradients, such as:

[
Sx(x,y)

Sy(x,y)

]

=
{

∇T (x,y) if ∥∇T (x,y)∥ > ∥∇S(x,y)∥
∇S(x,y) otherwise

(3.19)

This would preserve whatever gradients were stronger inside !. This is an example
of a non-conservative vector field, so we must use Equation (3.13), not Equation (3.11)
(though the numerical implementation is basically the same). Figure 3.10 illustrates
an example.
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Figure 3.9. Successful image composition using the Poisson equation.

(a) (b) (c)

Figure 3.10. (a) The region ! includes some key features of the target image. (b) Poisson image
compositing without modification creates unacceptable visual artifacts; the mountain’s color is
smudged into the source region. (c) Using mixed gradients to preserve the target edges in ! is
a big improvement.

We’ve assumed that the pixels from the source image entirely overwrite whatever
pixels used to be in the same place in the target image. However, in some cases, it
may be appropriate for the original target pixels to “show through.” For example, we
may want to maintain some of the texture of the target image, or give the sense that
the source pixels are slightly transparent. In this case, we could use a guidance vector
field given by a mixture of the source and target gradients, such as:

[
Sx(x,y)

Sy(x,y)

]

=
{

∇T (x,y) if ∥∇T (x,y)∥ > ∥∇S(x,y)∥
∇S(x,y) otherwise

(3.19)

This would preserve whatever gradients were stronger inside !. This is an example
of a non-conservative vector field, so we must use Equation (3.13), not Equation (3.11)
(though the numerical implementation is basically the same). Figure 3.10 illustrates
an example.
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orientation, and resolution. These objects are then composited into the target image
with an approach very similar to drag-and-drop pasting.

While we focused specifically on the compositing problem in this section, similar
gradient-domain techniques based on the Poisson equation have been applied in
several other areas of computer vision and graphics, including the removal of visible
seams in panorama construction [6], high dynamic range compression [136], and
locally changing color, illumination, and detail [364]. More generally, researchers
have proposed optimization frameworks that operate directly on image pixels and
their gradients for similar effects, such as Bhat et al.’s GradientShop [43].

3.3 GRAPH-CUT COMPOSITING

Poisson image editing works very well when the source and target images are rela-
tively simple and smooth near the desired boundary. However, if the source or target
is highly textured, it may be difficult to manually guess a good boundary around
the source object that will be harmonious with the texture at the desired region in
the target image. Drag-and-drop pasting offers one approach to automatically esti-
mating a good boundary for gradient-domain compositing, but there may be no
low-energy contours in a highly textured image. As another consideration, the colors
of a gradient-domain composite may seem unnatural, since the original colors of the
source image inside the target region are not preserved.

An alternative is to not blend the images across a boundary at all, but instead
to select a region of the source image that can be directly copied to its position
in the target image in the most unobtrusive way possible. The idea is to hide the
compositing boundary in places where either the source and target are very similar,
or there is enough texture in the target to obscure the presence of a discontinuity.
This can be naturally viewed as a labeling problem: given a measure of the quality
of a boundary and certain constraints, which pixels should come from the source
and which from the target? This is quite similar to the graph-cut-based segmentation
problem from Section 2.8.2.

Suppose the user has aligned a source image S with a target image T , as illustrated
in Figure 3.13. The user designates a set of pixels S that definitely must come from
the source, and another set T that definitely must come from the target. These con-
straints are analogous to those of the trimap and scribbles in the matting problem of

S T S T

(a) (b) (c)

Figure 3.13. Seam-based compositing. (a) The source image with a constrained set S. (b) The
target image with a constrained set T. (c) The final composite contains some pixels from the
source image (striped region) and some from the target image (white region), separated by a
seam.
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S

T
(a)

S

T
(b)

Figure 3.14. Graph formation for seam-based compositing. (a) Nodes in the set S (black dots)
are attached toSwith infiniteweight and have no links toT; conversely, nodes in the setT (white
dots) are attached to T with infinite weight and have no links to S. Gray nodes are uncommitted
and are not directly connected to the terminals. (b) The minimum-cost cut separates the source
and target terminals and defines a seam in the composite image.

Chapter 2. The remaining pixels comprise a region where the source/target bound-
ary, or seam, is allowed to pass. We build a graph over the potential boundary pixels,
creating an edge between each pair of 4-neighbors. An easy choice for the weight wij

assigned to edge eij is:

wij = ∥S(i)− T (i)∥+ ∥S(j)− T (j)∥ (3.23)

That is, the cost is low if the source and target pixels have similar colors on either
side of a potential seam. We also create a pair of terminal nodes S and T, and create
edges (i,S), (j,T) with infinite weight for all i ∈ S and all j ∈ T. The optimal seam
is then defined as the minimum-cost cut that separates S from T, as illustrated in
Figure 3.14. Just like in the previous chapter, we use graph cuts [59] to solve the
problem. Figure 3.15 illustrates an example of graph-cut-based compositing.

This approach to compositing was first proposed by Efros and Freeman [128] and
Kwatra et al. [259], although their primary interest was synthesizing realistic texture
(see Section 3.8). To bias the seam to go through higher-spatial-frequency regions
where it will be less noticeable, Kwatra et al. suggested modifying Equation (3.23) to:

wij = ∥S(i)− T (i)∥+ ∥S(j)− T (j)∥
|d ·∇S(i)|+ |d ·∇T (i)|+ |d ·∇S(j)|+ |d ·∇T (j)| (3.24)

where d is the direction of the edge (i.e., the vector pointing from pixel i to pixel j).
This way, the denominator will be small and the weight will be large if the seam passes
through a low-frequency (i.e., small-gradient) region.

We can generalize the graph-cut approach to deal with compositing multiple over-
lapping sources at the same time. For example, we may have several very similar
pictures of a family portrait, and want to create a composite that contains the best
view (e.g., eyes open, smiling) of each person. In this case, no single image acts as
the target; instead we begin with several registered source images S1, . . . ,SK and want
to create a composite I (x,y) where each pixel comes from one of the source images.
We want to bias contiguous chunks to come from each image, and as before, to hide
the seams in perceptually unimportant regions. Using graph cuts to make such a
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2.8.1 Graph Cut Segmentation

Many of the leading hard segmentation algorithms are based on Boykov and Jolly’s
pioneering work on graph cuts [59]. The setup is similar to the graphs from belief-
propagation and random-walk methods, but the graph problem solved is quite
different. We create a set of nodes V that contains all the pixels of the image, as well
as two special terminal nodes that we call F and B for foreground and background.
We also create a set of edges E between nodes, typically based on 4-adjacency in the
image. Each node is also connected to both F and B by an edge. An example graph
is shown in Figure 2.19a. Finally, we put a nonnegative weight wij on each edge eij

so that wij is large if the nodes are similar (i.e., we have evidence that they should be
assigned to the same region) and small otherwise.

A cut is a subset of edges C such that if we remove these edges from E, there is
no path from F to B in the resulting subgraph; that is, the terminals are separated
(Figure 2.19b). A cut induces a segmentation in the sense that all the nodes con-
nected to F constitute the foreground and all the nodes connected to B constitute the
background. Our goal is to find the minimum cut, that is, the one that minimizes the
cost:

|C| =
∑

(i,j)∈C
wij (2.83)

Boykov and colleagues showed that the globally optimal minimum cut could
quickly be computed in low-order polynomial time [60], leading to an explosion
of interest in graph-cut methods in the computer vision community. Appendix A.3
gives more details on the basic algorithm. GPU-based [515] and multi-core [296]
algorithms have been proposed to further accelerate finding the minimum cut.

As with scribble-based matting, the user designates certain pixels to belong to the
foreground F and others to the background B. For a labeled foreground pixel i, the
weight on edge (i,B) is set to 0 and the weight on edge (i,F) is set to infinity (or a very
large number) to force the minimum cut to assign i to the foreground. The reverse
is true for labeled background pixels. The scribbles also serve to generate weights
for connecting the rest of the nodes to the terminals. Boykov and Jolly originally

F

B

F

B
(a) (b)

Figure 2.19. (a) The configuration of nodes and edges for graph-cut-based segmentation. Each
pixel is connected to its neighbors aswell as to two special foreground andbackground terminals.
(b) A cut (dotted line) removes edges so that there is no path from the foreground terminal to
the background terminal.
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Exercise

• Poisson Image Blending (Additional: How to solve the problematic 
case - ) 

• Visualize Probability Distributions of BM and influence of sigma: 
potential libraries bokeh and seaborn. 
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Project

• Leap Motion / Intel Real Sense  

• Oculus Rendering (GUI in VR) 

• Photoscan Reconstruction 


