
KIT - Die Forschungsuniversität in der Helmholtz-Gemeinschaft
www.kit.edu

Jun. Prof. Dr.-Ing. Boris Neubert 
Karlsruhe Institut für Technologie

IVD - Institut für Visualisierung und Datenanalyse

Visual Computing:
Blending
SS 2016

http://www.kit.edu

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

We solved matting

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

We solved matting
Kind of :)

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

We solved matting

• And now for something completely different: blending

Kind of :)

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

We solved matting

• And now for something completely different: blending

Kind of :)

Kind of :)

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Overview
Image compositing as ‘reverse matting’ problem

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Overview

• Compositing hard edge image regions

• Gradient domain blending

• Graph cut compositing (cannot be solved by matting equation)

Image compositing as ‘reverse matting’ problem

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Overview: Hard Edge Regions

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Overview: Hard Edge Regions

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Overview: Gradient Domain Blending

62 Chapter 3. Image Compositing and Editing

However, none of these pyramid-style methods are well suited to the situation
when the source and target colors are not already well matched, as we’ll see in the
next section.

3.2 POISSON IMAGE EDITING

An appealing approach to compositing, pioneered by Pérez et al. [364], seam-
lessly merges the source region into the target image using an application of the
Poisson equation. To understand the Poisson compositing technique, we need to
define several concepts from continuous partial differential equations and vector
calculus, which we then translate into the discrete world to apply to digital images.

3.2.1 The Basic Idea

In place of a binary compositing mask M , we assume that the source image S is
defined over a closed region!; the boundary of this region is denoted as ∂!. Figure 3.6
illustrates these terms. The target image T is assumed to be defined over some
rectangular region in R2.

Formally, the composite image we want to construct, I (x,y), exactly agrees with
T (x,y) outside of !, and should “look like” S(x,y) inside !. The problem is that if we
directly place the source region on top of T and blend across the edge, for example
using the Laplacian pyramid approach, the result can be unacceptable due to color
mismatches, as illustrated in Figure 3.7.

What can we do to make the interior of ! “look like” the source, but avoid the color
mismatch problem? The key idea is to transfer the edges of the source image into !,
and then compute colors inside the region that are as harmonious as possible with
the pixels from T surrounding !. That is, we want the gradient of the desired image,
∇I (x,y), inside! to be as close as possible to∇S(x,y), subject to the constraint that the
result must match the existing values of T (x,y) on the boundary ∂!. This approach is
generally known as gradient-domain compositing. In continuous terms, this means

Ω

∂Ω

Source image

Figure 3.6. Terminology for Poisson image editing.

66 Chapter 3. Image Compositing and Editing

Figure 3.9. Successful image composition using the Poisson equation.

(a) (b) (c)

Figure 3.10. (a) The region ! includes some key features of the target image. (b) Poisson image
compositing without modification creates unacceptable visual artifacts; the mountain’s color is
smudged into the source region. (c) Using mixed gradients to preserve the target edges in ! is
a big improvement.

We’ve assumed that the pixels from the source image entirely overwrite whatever
pixels used to be in the same place in the target image. However, in some cases, it
may be appropriate for the original target pixels to “show through.” For example, we
may want to maintain some of the texture of the target image, or give the sense that
the source pixels are slightly transparent. In this case, we could use a guidance vector
field given by a mixture of the source and target gradients, such as:

[
Sx(x,y)

Sy(x,y)

]

=
{

∇T (x,y) if ∥∇T (x,y)∥ > ∥∇S(x,y)∥
∇S(x,y) otherwise

(3.19)

This would preserve whatever gradients were stronger inside !. This is an example
of a non-conservative vector field, so we must use Equation (3.13), not Equation (3.11)
(though the numerical implementation is basically the same). Figure 3.10 illustrates
an example.

3.2. Poisson Image Editing 63

(a)

(b)
(c)

Figure 3.7. (a) The target image and (b) the source image, indicating the region ! to be com-
posited. (c) Laplacian pyramid blending fails when the source and target regions’ colors differ
by too much.

that we want to solve

min
I (x,y)∈!

∫∫

!

∥∇I (x,y)−∇S(x,y)∥2 dx dy

s.t . I (x,y) = T (x,y) on ∂!

(3.7)

If we denote the integrand as

F (x,y) = ∥∇I (x,y)−∇S(x,y)∥2 =
(

∂I
∂x

− ∂S
∂x

)2

+
(

∂I
∂y

− ∂S
∂y

)2

(3.8)

then the calculus of variations implies that the I (x,y) that solves Equation (3.7) is a
solution of the Euler-Lagrange equation:

∂F
∂I

− d
dx

∂F
∂Ix

− d
dy

∂F
∂Iy

= 0 in ! (3.9)

Plugging Equation (3.8) into Equation (3.9) yields1

2

(
∂2I
∂x2 − ∂2S

∂x2

)

+ 2

(
∂2I
∂y2 − ∂2S

∂y2

)

= 0 in ! (3.10)

or more simply,

∇2I (x,y) = ∇2S(x,y) in ! (3.11)

s.t . I (x,y) = T (x,y) on ∂! (3.12)

1 Note that the term ∂F
∂I in Equation (3.9) equates to 0 in this case, since the partial is treated with

respect to the symbol I , and I doesn’t appear by itself in Equation (3.8).

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Overview: Graph Cut Compositing
3.3. Graph-Cut Compositing 71

(a) (b)

(c) (d)

Figure 3.15. Anexample of graph-cut compositing. (a) Target image. (b) Source image,with user
strokes overlaid to indicate regions that must be included. (c) Graph-cut composite. (d) Region
labels used to form the composite (black pixels are from (a), white pixels are from (b)).

multi-image photomontage was suggested by Agarwala et al. [7], building off Kwatra
et al.’s framework.

The basic idea is to minimize a Gibbs energy of the form:

E(L) =
∑

i∈V
Edata(L(i))+

∑

(i,j)∈E
Esmoothness(L(i),L(j)) (3.25)

Here, V is the set of pixels in the output image, E is the set of all adjacent pixels
(for example, 4-neighbors), and L is a labeling; that is, an assignment in {1, . . . ,K } to
each pixel i. For the multi-image compositing problem, the user paints initial strokes
in each source image, signifying that pixels stroked in image Sk must have label k in
the final composite. Natural forms of the two energy terms are:

Edata(L(i) = k) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if pixel i is stroked in Sk

∞ if pixel i is stroked in some image Sj ̸= Sk

0 otherwise

(3.26)

Esmoothness(L(i) = k,L(j) = l) = ∥Sk(i)− Sl(i)∥+ ∥Sk(j)− Sl(j)∥ (3.27)

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Overview: Graph Cut Compositing
3.3. Graph-Cut Compositing 71

(a) (b)

(c) (d)

Figure 3.15. Anexample of graph-cut compositing. (a) Target image. (b) Source image,with user
strokes overlaid to indicate regions that must be included. (c) Graph-cut composite. (d) Region
labels used to form the composite (black pixels are from (a), white pixels are from (b)).

multi-image photomontage was suggested by Agarwala et al. [7], building off Kwatra
et al.’s framework.

The basic idea is to minimize a Gibbs energy of the form:

E(L) =
∑

i∈V
Edata(L(i))+

∑

(i,j)∈E
Esmoothness(L(i),L(j)) (3.25)

Here, V is the set of pixels in the output image, E is the set of all adjacent pixels
(for example, 4-neighbors), and L is a labeling; that is, an assignment in {1, . . . ,K } to
each pixel i. For the multi-image compositing problem, the user paints initial strokes
in each source image, signifying that pixels stroked in image Sk must have label k in
the final composite. Natural forms of the two energy terms are:

Edata(L(i) = k) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if pixel i is stroked in Sk

∞ if pixel i is stroked in some image Sj ̸= Sk

0 otherwise

(3.26)

Esmoothness(L(i) = k,L(j) = l) = ∥Sk(i)− Sl(i)∥+ ∥Sk(j)− Sl(j)∥ (3.27)

3.3. Graph-Cut Compositing 71

(a) (b)

(c) (d)

Figure 3.15. Anexample of graph-cut compositing. (a) Target image. (b) Source image,with user
strokes overlaid to indicate regions that must be included. (c) Graph-cut composite. (d) Region
labels used to form the composite (black pixels are from (a), white pixels are from (b)).

multi-image photomontage was suggested by Agarwala et al. [7], building off Kwatra
et al.’s framework.

The basic idea is to minimize a Gibbs energy of the form:

E(L) =
∑

i∈V
Edata(L(i))+

∑

(i,j)∈E
Esmoothness(L(i),L(j)) (3.25)

Here, V is the set of pixels in the output image, E is the set of all adjacent pixels
(for example, 4-neighbors), and L is a labeling; that is, an assignment in {1, . . . ,K } to
each pixel i. For the multi-image compositing problem, the user paints initial strokes
in each source image, signifying that pixels stroked in image Sk must have label k in
the final composite. Natural forms of the two energy terms are:

Edata(L(i) = k) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if pixel i is stroked in Sk

∞ if pixel i is stroked in some image Sj ̸= Sk

0 otherwise

(3.26)

Esmoothness(L(i) = k,L(j) = l) = ∥Sk(i)− Sl(i)∥+ ∥Sk(j)− Sl(j)∥ (3.27)

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Overview: Graph Cut Compositing
72 Chapter 3. Image Compositing and Editing

(a)

(b)

(c)

Figure 3.16. A multi-image photomontage created with α-expansion. (a) The original images,
color-coded as red, green, and blue. Each image has some unsatisfactory facial expressions. (b) A
user scribbles on faces and body parts to keep from each source image, resulting in the labeling
map at right. Note that in several cases, a person’s head is taken from one source image and
their body from another. (c) The final composite.

We can modify Equation (3.27) similarly to Equation (3.24) to bias seams to lie along
existing image edges.

Unfortunately, the graph-cut algorithm cannot directly minimize a function like
Equation (3.25) where we have more than two possible labels per pixel (i.e., more than

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Overview: Graph Cut Compositing
72 Chapter 3. Image Compositing and Editing

(a)

(b)

(c)

Figure 3.16. A multi-image photomontage created with α-expansion. (a) The original images,
color-coded as red, green, and blue. Each image has some unsatisfactory facial expressions. (b) A
user scribbles on faces and body parts to keep from each source image, resulting in the labeling
map at right. Note that in several cases, a person’s head is taken from one source image and
their body from another. (c) The final composite.

We can modify Equation (3.27) similarly to Equation (3.24) to bias seams to lie along
existing image edges.

Unfortunately, the graph-cut algorithm cannot directly minimize a function like
Equation (3.25) where we have more than two possible labels per pixel (i.e., more than

72 Chapter 3. Image Compositing and Editing

(a)

(b)

(c)

Figure 3.16. A multi-image photomontage created with α-expansion. (a) The original images,
color-coded as red, green, and blue. Each image has some unsatisfactory facial expressions. (b) A
user scribbles on faces and body parts to keep from each source image, resulting in the labeling
map at right. Note that in several cases, a person’s head is taken from one source image and
their body from another. (c) The final composite.

We can modify Equation (3.27) similarly to Equation (3.24) to bias seams to lie along
existing image edges.

Unfortunately, the graph-cut algorithm cannot directly minimize a function like
Equation (3.25) where we have more than two possible labels per pixel (i.e., more than

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Matting/Blending Eq.

I = ↵F + (1� ↵)B

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Matting/Blending Eq.

I = ↵F + (1� ↵)B

I(x, y) =

(
F (x, y) where ↵ = 1

B(x, y) where ↵ = 0

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Terminology3.1. Compositing Hard-Edged Pieces 57

S

T

(a) (b)

T

seam

S

M

Figure 3.1. The compositing problem with hard-edged pieces. (a) Source, target, and mask
images. (b) In the composite image, regions from the source and target images are separated
by a seam. We want to make the transition between source and target as imperceptible as
possible.

for “twinning” effects, such as in Friends, Back to the Future II, or Moon. For exam-
ple, an actor is filmed interacting with him/herself twice: once on the left side of the
screen and once on the right. In early versions of this effect, the seam between the
two shots was either very visible (e.g., a line down the middle of the screen) or hidden
by an obvious foreground object (e.g., a fence or tree). In this case, the problem is to
fuse two images I1 and I2 along a given seam, where neither image is naturally the
foreground or background and both are of equal importance.

Why were seams so visible using the simple technique of Equation (3.1)? Even
if the camera was locked down with identical location and exposure to take both
the source and target shots, lighting conditions between shots are extremely dif-
ficult to match exactly, and the human visual system is extremely sensitive to
the presence of edges, especially in constant-intensity, low-frequency regions (see
Figure 3.3a). The situation only becomes worse if one image is taken at a differ-
ent time or under different conditions than the other (for example, an actor shot
on a studio set is to be composited into an outdoor scene). Much of this chapter
is about the problem of hiding seams — both by choosing clever, non-straight-line
paths for the seams to take, and by more intelligently blending intensities across
the seam.

3.1.1 Weighted Transition Regions

An obvious approach to making the seam less noticeable is to blend the pixel
intensities across the seam with a parametric weighting function. That is, in the
neighborhood of the seam, the composite pixel color is a weighted average of the
source and target colors, depending on how close the pixel is to the source. For an
object that’s not too complex, this weighted average looks like Figure 3.2 on a profile
perpendicular to the source boundary. This approach is similar to border matting

S: source image, T: target image, M: binary mask

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Visible Seams

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Visible Seams

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Transition Regions
58 Chapter 3. Image Compositing and Editing

Transition region

1

0

C
on

tr
ib

ut
io

n
fra

ct
io

n

Source sideTarget side

SourceTarget

Figure 3.2. The composite contains a weighted average of source and target pixels across the
transition region.

(a) (b) (c)

Figure 3.3. Possible compositing strategies illustrating source weights (top) and composites
(bottom). (a) A hard seam produces a visible, distracting edge. (b) A narrow, linearly-weighted
transition region still creates a visible seam. (c) A wider, linearly-weighted transition region can
result in low-detail regions around the boundary where the two images are averaged, resulting
in a diffuse “halo.”

from Section 2.8.2, since we’re effectively creating a non-binary alpha matte for the
source based on a hard foreground segmentation.

However, deciding on the width of the transition region (that is, the region in which
pixels are a mix between source and target) is difficult. If the region is too narrow, the
seam will still be visible, but if the region is too wide, the averaging in the transition
region will remove details, as illustrated in Figure 3.3b-c.

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Different Transition Region Widths

58 Chapter 3. Image Compositing and Editing

Transition region

1

0

C
on

tr
ib

ut
io

n
fra

ct
io

n

Source sideTarget side

SourceTarget

Figure 3.2. The composite contains a weighted average of source and target pixels across the
transition region.

(a) (b) (c)

Figure 3.3. Possible compositing strategies illustrating source weights (top) and composites
(bottom). (a) A hard seam produces a visible, distracting edge. (b) A narrow, linearly-weighted
transition region still creates a visible seam. (c) A wider, linearly-weighted transition region can
result in low-detail regions around the boundary where the two images are averaged, resulting
in a diffuse “halo.”

from Section 2.8.2, since we’re effectively creating a non-binary alpha matte for the
source based on a hard foreground segmentation.

However, deciding on the width of the transition region (that is, the region in which
pixels are a mix between source and target) is difficult. If the region is too narrow, the
seam will still be visible, but if the region is too wide, the averaging in the transition
region will remove details, as illustrated in Figure 3.3b-c.

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Matte Painting

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Matte Painting

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Burt and Adelson

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Burt and Adelson

• Blend low-frequency changes across wide transition regions.

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Burt and Adelson

• Blend low-frequency changes across wide transition regions.

• Blend high-frequency changes across narrow transition regions.

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Peter J. Burt and Edward H. Adelson. 1983. A multiresolution
spline with application to image mosaics. ACM Trans. Graph.

2, 4 (October 1983), 217-236. DOI=http://dx.doi.org/
10.1145/245.247

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

E. P. Simoncelli and W. T. Freeman. 1995. The steerable pyramid: a flexible
architecture for multi-scale derivative computation. In Proceedings of the 1995

International Conference on Image Processing (Vol. 3)-Volume 3 - Volume 3 (ICIP
'95), Vol. 3. IEEE Computer Society, Washington, DC, USA, 3444-.

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Gaussian Pyramid

3.1. Compositing Hard-Edged Pieces 59

3.1.2 Multiresolution Blending with a Laplacian Pyramid

Burt and Adelson [78] made a key observation about blending across a seam, rooted
in a frequency-domain interpretation of the images to be combined. The idea is sim-
ple: low-frequency components (i.e., smooth, gradual intensity variations) should be
blended across wide transition regions, while high-frequency components (i.e., edges
and regions with fine detail) should be blended across narrow transition regions.
These goals can be easily, simultaneously accomplished using a Laplacian pyramid,
a common multiresolution representation for images. In this section, we assume
that the images are grayscale, and that for color images each channel is processed
independently and recombined.

For a given image I , the first step is to blur it at different scales, by successively
filtering it with a Gaussian (or more generally, low-pass) kernel. At each step, the res-
olution of the image is halved in both dimensions, so that successive images appear
as smaller, blurrier versions of the original. The top row of Figure 3.4 illustrates sev-
eral steps of this process, which is called a Gaussian pyramid. That is, we create a
hierarchy of images given by

Gi = (K ∗ Gi−1)↓2, i = 1, . . . ,N (3.2)

where ∗ indicates two-dimensional convolution, ↓ 2 indicates downsampling by 2
in both dimensions, and G0 = I , the original image. K is an approximate Gaussian
kernel, or a low-pass filter whose elements sum to 1, such as

K = [−0.05, 0.25, 0.6, 0.25, −0.05]⊤ [−0.05, 0.25, 0.6, 0.25, −0.05] (3.3)

For compositing, we’re interested in the edges that are significant at every scale,
which can be obtained by taking the difference of Gaussians at each scale:

Li = Gi − (K ∗ Gi), i = 0, . . . ,N − 1 (3.4)

The images Li form what is called a Laplacian pyramid, since the shape of the two-
dimensional Laplacian operator (also known as the “Mexican hat” function) is similar
to a difference of Gaussians at different scales (we’ll discuss this property more in
Section 4.1.4). As illustrated in the bottom row of Figure 3.4, each image in the Lapla-
cian pyramid can be viewed as a bandpass image at a different scale. The smallest
image LN in the pyramid is defined to be a small, highly blurred version of the original
image, given by GN , while the other images contain edges prevalent at different image
scales (for example, L0 contains the finest-detail edges). Therefore, we can write the
original image as the sum of the images of the pyramid:

I =
N∑

i=0

Li↑ (3.5)

Gaussian Kernel (blurring kernel)

3.1. Compositing Hard-Edged Pieces 59

3.1.2 Multiresolution Blending with a Laplacian Pyramid

Burt and Adelson [78] made a key observation about blending across a seam, rooted
in a frequency-domain interpretation of the images to be combined. The idea is sim-
ple: low-frequency components (i.e., smooth, gradual intensity variations) should be
blended across wide transition regions, while high-frequency components (i.e., edges
and regions with fine detail) should be blended across narrow transition regions.
These goals can be easily, simultaneously accomplished using a Laplacian pyramid,
a common multiresolution representation for images. In this section, we assume
that the images are grayscale, and that for color images each channel is processed
independently and recombined.

For a given image I , the first step is to blur it at different scales, by successively
filtering it with a Gaussian (or more generally, low-pass) kernel. At each step, the res-
olution of the image is halved in both dimensions, so that successive images appear
as smaller, blurrier versions of the original. The top row of Figure 3.4 illustrates sev-
eral steps of this process, which is called a Gaussian pyramid. That is, we create a
hierarchy of images given by

Gi = (K ∗ Gi−1)↓2, i = 1, . . . ,N (3.2)

where ∗ indicates two-dimensional convolution, ↓ 2 indicates downsampling by 2
in both dimensions, and G0 = I , the original image. K is an approximate Gaussian
kernel, or a low-pass filter whose elements sum to 1, such as

K = [−0.05, 0.25, 0.6, 0.25, −0.05]⊤ [−0.05, 0.25, 0.6, 0.25, −0.05] (3.3)

For compositing, we’re interested in the edges that are significant at every scale,
which can be obtained by taking the difference of Gaussians at each scale:

Li = Gi − (K ∗ Gi), i = 0, . . . ,N − 1 (3.4)

The images Li form what is called a Laplacian pyramid, since the shape of the two-
dimensional Laplacian operator (also known as the “Mexican hat” function) is similar
to a difference of Gaussians at different scales (we’ll discuss this property more in
Section 4.1.4). As illustrated in the bottom row of Figure 3.4, each image in the Lapla-
cian pyramid can be viewed as a bandpass image at a different scale. The smallest
image LN in the pyramid is defined to be a small, highly blurred version of the original
image, given by GN , while the other images contain edges prevalent at different image
scales (for example, L0 contains the finest-detail edges). Therefore, we can write the
original image as the sum of the images of the pyramid:

I =
N∑

i=0

Li↑ (3.5)

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Gaussian Pyramid

3.1. Compositing Hard-Edged Pieces 59

3.1.2 Multiresolution Blending with a Laplacian Pyramid

Burt and Adelson [78] made a key observation about blending across a seam, rooted
in a frequency-domain interpretation of the images to be combined. The idea is sim-
ple: low-frequency components (i.e., smooth, gradual intensity variations) should be
blended across wide transition regions, while high-frequency components (i.e., edges
and regions with fine detail) should be blended across narrow transition regions.
These goals can be easily, simultaneously accomplished using a Laplacian pyramid,
a common multiresolution representation for images. In this section, we assume
that the images are grayscale, and that for color images each channel is processed
independently and recombined.

For a given image I , the first step is to blur it at different scales, by successively
filtering it with a Gaussian (or more generally, low-pass) kernel. At each step, the res-
olution of the image is halved in both dimensions, so that successive images appear
as smaller, blurrier versions of the original. The top row of Figure 3.4 illustrates sev-
eral steps of this process, which is called a Gaussian pyramid. That is, we create a
hierarchy of images given by

Gi = (K ∗ Gi−1)↓2, i = 1, . . . ,N (3.2)

where ∗ indicates two-dimensional convolution, ↓ 2 indicates downsampling by 2
in both dimensions, and G0 = I , the original image. K is an approximate Gaussian
kernel, or a low-pass filter whose elements sum to 1, such as

K = [−0.05, 0.25, 0.6, 0.25, −0.05]⊤ [−0.05, 0.25, 0.6, 0.25, −0.05] (3.3)

For compositing, we’re interested in the edges that are significant at every scale,
which can be obtained by taking the difference of Gaussians at each scale:

Li = Gi − (K ∗ Gi), i = 0, . . . ,N − 1 (3.4)

The images Li form what is called a Laplacian pyramid, since the shape of the two-
dimensional Laplacian operator (also known as the “Mexican hat” function) is similar
to a difference of Gaussians at different scales (we’ll discuss this property more in
Section 4.1.4). As illustrated in the bottom row of Figure 3.4, each image in the Lapla-
cian pyramid can be viewed as a bandpass image at a different scale. The smallest
image LN in the pyramid is defined to be a small, highly blurred version of the original
image, given by GN , while the other images contain edges prevalent at different image
scales (for example, L0 contains the finest-detail edges). Therefore, we can write the
original image as the sum of the images of the pyramid:

I =
N∑

i=0

Li↑ (3.5)

Gaussian Kernel (blurring kernel)
60 Chapter 3. Image Compositing and Editing

G4

L4

G1

L1

G0

L0

G3

L3

G2

L2

Figure 3.4. The top row illustrates the Gaussian pyramid of an image I = G0, generated by
filtering with the matrix in Equation (3.3) and downsampling by 2 at each step. Each image is
a smaller, blurrier version of its predecessor. The bottom row illustrates the Laplacian pyramid
for the image I , generated by successive differencing of the images in the top row according to
Equation (3.4). Each Laplacian image contains the edges at successively coarser scales.

where ↑ indicates the images have been upsampled and interpolated to the original
image resolution before summing them.

To compose a source image S onto a target image T using Burt and Adelson’s
approach, we first compute the Laplacian pyramids LS and LT for both images. We

3.1. Compositing Hard-Edged Pieces 59

3.1.2 Multiresolution Blending with a Laplacian Pyramid

Burt and Adelson [78] made a key observation about blending across a seam, rooted
in a frequency-domain interpretation of the images to be combined. The idea is sim-
ple: low-frequency components (i.e., smooth, gradual intensity variations) should be
blended across wide transition regions, while high-frequency components (i.e., edges
and regions with fine detail) should be blended across narrow transition regions.
These goals can be easily, simultaneously accomplished using a Laplacian pyramid,
a common multiresolution representation for images. In this section, we assume
that the images are grayscale, and that for color images each channel is processed
independently and recombined.

For a given image I , the first step is to blur it at different scales, by successively
filtering it with a Gaussian (or more generally, low-pass) kernel. At each step, the res-
olution of the image is halved in both dimensions, so that successive images appear
as smaller, blurrier versions of the original. The top row of Figure 3.4 illustrates sev-
eral steps of this process, which is called a Gaussian pyramid. That is, we create a
hierarchy of images given by

Gi = (K ∗ Gi−1)↓2, i = 1, . . . ,N (3.2)

where ∗ indicates two-dimensional convolution, ↓ 2 indicates downsampling by 2
in both dimensions, and G0 = I , the original image. K is an approximate Gaussian
kernel, or a low-pass filter whose elements sum to 1, such as

K = [−0.05, 0.25, 0.6, 0.25, −0.05]⊤ [−0.05, 0.25, 0.6, 0.25, −0.05] (3.3)

For compositing, we’re interested in the edges that are significant at every scale,
which can be obtained by taking the difference of Gaussians at each scale:

Li = Gi − (K ∗ Gi), i = 0, . . . ,N − 1 (3.4)

The images Li form what is called a Laplacian pyramid, since the shape of the two-
dimensional Laplacian operator (also known as the “Mexican hat” function) is similar
to a difference of Gaussians at different scales (we’ll discuss this property more in
Section 4.1.4). As illustrated in the bottom row of Figure 3.4, each image in the Lapla-
cian pyramid can be viewed as a bandpass image at a different scale. The smallest
image LN in the pyramid is defined to be a small, highly blurred version of the original
image, given by GN , while the other images contain edges prevalent at different image
scales (for example, L0 contains the finest-detail edges). Therefore, we can write the
original image as the sum of the images of the pyramid:

I =
N∑

i=0

Li↑ (3.5)

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Gaussian Pyramid

3.1. Compositing Hard-Edged Pieces 59

3.1.2 Multiresolution Blending with a Laplacian Pyramid

Burt and Adelson [78] made a key observation about blending across a seam, rooted
in a frequency-domain interpretation of the images to be combined. The idea is sim-
ple: low-frequency components (i.e., smooth, gradual intensity variations) should be
blended across wide transition regions, while high-frequency components (i.e., edges
and regions with fine detail) should be blended across narrow transition regions.
These goals can be easily, simultaneously accomplished using a Laplacian pyramid,
a common multiresolution representation for images. In this section, we assume
that the images are grayscale, and that for color images each channel is processed
independently and recombined.

For a given image I , the first step is to blur it at different scales, by successively
filtering it with a Gaussian (or more generally, low-pass) kernel. At each step, the res-
olution of the image is halved in both dimensions, so that successive images appear
as smaller, blurrier versions of the original. The top row of Figure 3.4 illustrates sev-
eral steps of this process, which is called a Gaussian pyramid. That is, we create a
hierarchy of images given by

Gi = (K ∗ Gi−1)↓2, i = 1, . . . ,N (3.2)

where ∗ indicates two-dimensional convolution, ↓ 2 indicates downsampling by 2
in both dimensions, and G0 = I , the original image. K is an approximate Gaussian
kernel, or a low-pass filter whose elements sum to 1, such as

K = [−0.05, 0.25, 0.6, 0.25, −0.05]⊤ [−0.05, 0.25, 0.6, 0.25, −0.05] (3.3)

For compositing, we’re interested in the edges that are significant at every scale,
which can be obtained by taking the difference of Gaussians at each scale:

Li = Gi − (K ∗ Gi), i = 0, . . . ,N − 1 (3.4)

The images Li form what is called a Laplacian pyramid, since the shape of the two-
dimensional Laplacian operator (also known as the “Mexican hat” function) is similar
to a difference of Gaussians at different scales (we’ll discuss this property more in
Section 4.1.4). As illustrated in the bottom row of Figure 3.4, each image in the Lapla-
cian pyramid can be viewed as a bandpass image at a different scale. The smallest
image LN in the pyramid is defined to be a small, highly blurred version of the original
image, given by GN , while the other images contain edges prevalent at different image
scales (for example, L0 contains the finest-detail edges). Therefore, we can write the
original image as the sum of the images of the pyramid:

I =
N∑

i=0

Li↑ (3.5)

Gaussian Kernel (blurring kernel)
60 Chapter 3. Image Compositing and Editing

G4

L4

G1

L1

G0

L0

G3

L3

G2

L2

Figure 3.4. The top row illustrates the Gaussian pyramid of an image I = G0, generated by
filtering with the matrix in Equation (3.3) and downsampling by 2 at each step. Each image is
a smaller, blurrier version of its predecessor. The bottom row illustrates the Laplacian pyramid
for the image I , generated by successive differencing of the images in the top row according to
Equation (3.4). Each Laplacian image contains the edges at successively coarser scales.

where ↑ indicates the images have been upsampled and interpolated to the original
image resolution before summing them.

To compose a source image S onto a target image T using Burt and Adelson’s
approach, we first compute the Laplacian pyramids LS and LT for both images. We

G0 ⇤K

3.1. Compositing Hard-Edged Pieces 59

3.1.2 Multiresolution Blending with a Laplacian Pyramid

Burt and Adelson [78] made a key observation about blending across a seam, rooted
in a frequency-domain interpretation of the images to be combined. The idea is sim-
ple: low-frequency components (i.e., smooth, gradual intensity variations) should be
blended across wide transition regions, while high-frequency components (i.e., edges
and regions with fine detail) should be blended across narrow transition regions.
These goals can be easily, simultaneously accomplished using a Laplacian pyramid,
a common multiresolution representation for images. In this section, we assume
that the images are grayscale, and that for color images each channel is processed
independently and recombined.

For a given image I , the first step is to blur it at different scales, by successively
filtering it with a Gaussian (or more generally, low-pass) kernel. At each step, the res-
olution of the image is halved in both dimensions, so that successive images appear
as smaller, blurrier versions of the original. The top row of Figure 3.4 illustrates sev-
eral steps of this process, which is called a Gaussian pyramid. That is, we create a
hierarchy of images given by

Gi = (K ∗ Gi−1)↓2, i = 1, . . . ,N (3.2)

where ∗ indicates two-dimensional convolution, ↓ 2 indicates downsampling by 2
in both dimensions, and G0 = I , the original image. K is an approximate Gaussian
kernel, or a low-pass filter whose elements sum to 1, such as

K = [−0.05, 0.25, 0.6, 0.25, −0.05]⊤ [−0.05, 0.25, 0.6, 0.25, −0.05] (3.3)

For compositing, we’re interested in the edges that are significant at every scale,
which can be obtained by taking the difference of Gaussians at each scale:

Li = Gi − (K ∗ Gi), i = 0, . . . ,N − 1 (3.4)

The images Li form what is called a Laplacian pyramid, since the shape of the two-
dimensional Laplacian operator (also known as the “Mexican hat” function) is similar
to a difference of Gaussians at different scales (we’ll discuss this property more in
Section 4.1.4). As illustrated in the bottom row of Figure 3.4, each image in the Lapla-
cian pyramid can be viewed as a bandpass image at a different scale. The smallest
image LN in the pyramid is defined to be a small, highly blurred version of the original
image, given by GN , while the other images contain edges prevalent at different image
scales (for example, L0 contains the finest-detail edges). Therefore, we can write the
original image as the sum of the images of the pyramid:

I =
N∑

i=0

Li↑ (3.5)

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Gaussian Pyramid

3.1. Compositing Hard-Edged Pieces 59

3.1.2 Multiresolution Blending with a Laplacian Pyramid

Burt and Adelson [78] made a key observation about blending across a seam, rooted
in a frequency-domain interpretation of the images to be combined. The idea is sim-
ple: low-frequency components (i.e., smooth, gradual intensity variations) should be
blended across wide transition regions, while high-frequency components (i.e., edges
and regions with fine detail) should be blended across narrow transition regions.
These goals can be easily, simultaneously accomplished using a Laplacian pyramid,
a common multiresolution representation for images. In this section, we assume
that the images are grayscale, and that for color images each channel is processed
independently and recombined.

For a given image I , the first step is to blur it at different scales, by successively
filtering it with a Gaussian (or more generally, low-pass) kernel. At each step, the res-
olution of the image is halved in both dimensions, so that successive images appear
as smaller, blurrier versions of the original. The top row of Figure 3.4 illustrates sev-
eral steps of this process, which is called a Gaussian pyramid. That is, we create a
hierarchy of images given by

Gi = (K ∗ Gi−1)↓2, i = 1, . . . ,N (3.2)

where ∗ indicates two-dimensional convolution, ↓ 2 indicates downsampling by 2
in both dimensions, and G0 = I , the original image. K is an approximate Gaussian
kernel, or a low-pass filter whose elements sum to 1, such as

K = [−0.05, 0.25, 0.6, 0.25, −0.05]⊤ [−0.05, 0.25, 0.6, 0.25, −0.05] (3.3)

For compositing, we’re interested in the edges that are significant at every scale,
which can be obtained by taking the difference of Gaussians at each scale:

Li = Gi − (K ∗ Gi), i = 0, . . . ,N − 1 (3.4)

The images Li form what is called a Laplacian pyramid, since the shape of the two-
dimensional Laplacian operator (also known as the “Mexican hat” function) is similar
to a difference of Gaussians at different scales (we’ll discuss this property more in
Section 4.1.4). As illustrated in the bottom row of Figure 3.4, each image in the Lapla-
cian pyramid can be viewed as a bandpass image at a different scale. The smallest
image LN in the pyramid is defined to be a small, highly blurred version of the original
image, given by GN , while the other images contain edges prevalent at different image
scales (for example, L0 contains the finest-detail edges). Therefore, we can write the
original image as the sum of the images of the pyramid:

I =
N∑

i=0

Li↑ (3.5)

Gaussian Kernel (blurring kernel)
60 Chapter 3. Image Compositing and Editing

G4

L4

G1

L1

G0

L0

G3

L3

G2

L2

Figure 3.4. The top row illustrates the Gaussian pyramid of an image I = G0, generated by
filtering with the matrix in Equation (3.3) and downsampling by 2 at each step. Each image is
a smaller, blurrier version of its predecessor. The bottom row illustrates the Laplacian pyramid
for the image I , generated by successive differencing of the images in the top row according to
Equation (3.4). Each Laplacian image contains the edges at successively coarser scales.

where ↑ indicates the images have been upsampled and interpolated to the original
image resolution before summing them.

To compose a source image S onto a target image T using Burt and Adelson’s
approach, we first compute the Laplacian pyramids LS and LT for both images. We

G0 ⇤K
G1 = (G0 ⇤K)#

3.1. Compositing Hard-Edged Pieces 59

3.1.2 Multiresolution Blending with a Laplacian Pyramid

Burt and Adelson [78] made a key observation about blending across a seam, rooted
in a frequency-domain interpretation of the images to be combined. The idea is sim-
ple: low-frequency components (i.e., smooth, gradual intensity variations) should be
blended across wide transition regions, while high-frequency components (i.e., edges
and regions with fine detail) should be blended across narrow transition regions.
These goals can be easily, simultaneously accomplished using a Laplacian pyramid,
a common multiresolution representation for images. In this section, we assume
that the images are grayscale, and that for color images each channel is processed
independently and recombined.

For a given image I , the first step is to blur it at different scales, by successively
filtering it with a Gaussian (or more generally, low-pass) kernel. At each step, the res-
olution of the image is halved in both dimensions, so that successive images appear
as smaller, blurrier versions of the original. The top row of Figure 3.4 illustrates sev-
eral steps of this process, which is called a Gaussian pyramid. That is, we create a
hierarchy of images given by

Gi = (K ∗ Gi−1)↓2, i = 1, . . . ,N (3.2)

where ∗ indicates two-dimensional convolution, ↓ 2 indicates downsampling by 2
in both dimensions, and G0 = I , the original image. K is an approximate Gaussian
kernel, or a low-pass filter whose elements sum to 1, such as

K = [−0.05, 0.25, 0.6, 0.25, −0.05]⊤ [−0.05, 0.25, 0.6, 0.25, −0.05] (3.3)

For compositing, we’re interested in the edges that are significant at every scale,
which can be obtained by taking the difference of Gaussians at each scale:

Li = Gi − (K ∗ Gi), i = 0, . . . ,N − 1 (3.4)

The images Li form what is called a Laplacian pyramid, since the shape of the two-
dimensional Laplacian operator (also known as the “Mexican hat” function) is similar
to a difference of Gaussians at different scales (we’ll discuss this property more in
Section 4.1.4). As illustrated in the bottom row of Figure 3.4, each image in the Lapla-
cian pyramid can be viewed as a bandpass image at a different scale. The smallest
image LN in the pyramid is defined to be a small, highly blurred version of the original
image, given by GN , while the other images contain edges prevalent at different image
scales (for example, L0 contains the finest-detail edges). Therefore, we can write the
original image as the sum of the images of the pyramid:

I =
N∑

i=0

Li↑ (3.5)

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Gaussian Pyramid

3.1. Compositing Hard-Edged Pieces 59

3.1.2 Multiresolution Blending with a Laplacian Pyramid

Burt and Adelson [78] made a key observation about blending across a seam, rooted
in a frequency-domain interpretation of the images to be combined. The idea is sim-
ple: low-frequency components (i.e., smooth, gradual intensity variations) should be
blended across wide transition regions, while high-frequency components (i.e., edges
and regions with fine detail) should be blended across narrow transition regions.
These goals can be easily, simultaneously accomplished using a Laplacian pyramid,
a common multiresolution representation for images. In this section, we assume
that the images are grayscale, and that for color images each channel is processed
independently and recombined.

For a given image I , the first step is to blur it at different scales, by successively
filtering it with a Gaussian (or more generally, low-pass) kernel. At each step, the res-
olution of the image is halved in both dimensions, so that successive images appear
as smaller, blurrier versions of the original. The top row of Figure 3.4 illustrates sev-
eral steps of this process, which is called a Gaussian pyramid. That is, we create a
hierarchy of images given by

Gi = (K ∗ Gi−1)↓2, i = 1, . . . ,N (3.2)

where ∗ indicates two-dimensional convolution, ↓ 2 indicates downsampling by 2
in both dimensions, and G0 = I , the original image. K is an approximate Gaussian
kernel, or a low-pass filter whose elements sum to 1, such as

K = [−0.05, 0.25, 0.6, 0.25, −0.05]⊤ [−0.05, 0.25, 0.6, 0.25, −0.05] (3.3)

For compositing, we’re interested in the edges that are significant at every scale,
which can be obtained by taking the difference of Gaussians at each scale:

Li = Gi − (K ∗ Gi), i = 0, . . . ,N − 1 (3.4)

The images Li form what is called a Laplacian pyramid, since the shape of the two-
dimensional Laplacian operator (also known as the “Mexican hat” function) is similar
to a difference of Gaussians at different scales (we’ll discuss this property more in
Section 4.1.4). As illustrated in the bottom row of Figure 3.4, each image in the Lapla-
cian pyramid can be viewed as a bandpass image at a different scale. The smallest
image LN in the pyramid is defined to be a small, highly blurred version of the original
image, given by GN , while the other images contain edges prevalent at different image
scales (for example, L0 contains the finest-detail edges). Therefore, we can write the
original image as the sum of the images of the pyramid:

I =
N∑

i=0

Li↑ (3.5)

3.1. Compositing Hard-Edged Pieces 59

3.1.2 Multiresolution Blending with a Laplacian Pyramid

Burt and Adelson [78] made a key observation about blending across a seam, rooted
in a frequency-domain interpretation of the images to be combined. The idea is sim-
ple: low-frequency components (i.e., smooth, gradual intensity variations) should be
blended across wide transition regions, while high-frequency components (i.e., edges
and regions with fine detail) should be blended across narrow transition regions.
These goals can be easily, simultaneously accomplished using a Laplacian pyramid,
a common multiresolution representation for images. In this section, we assume
that the images are grayscale, and that for color images each channel is processed
independently and recombined.

For a given image I , the first step is to blur it at different scales, by successively
filtering it with a Gaussian (or more generally, low-pass) kernel. At each step, the res-
olution of the image is halved in both dimensions, so that successive images appear
as smaller, blurrier versions of the original. The top row of Figure 3.4 illustrates sev-
eral steps of this process, which is called a Gaussian pyramid. That is, we create a
hierarchy of images given by

Gi = (K ∗ Gi−1)↓2, i = 1, . . . ,N (3.2)

where ∗ indicates two-dimensional convolution, ↓ 2 indicates downsampling by 2
in both dimensions, and G0 = I , the original image. K is an approximate Gaussian
kernel, or a low-pass filter whose elements sum to 1, such as

K = [−0.05, 0.25, 0.6, 0.25, −0.05]⊤ [−0.05, 0.25, 0.6, 0.25, −0.05] (3.3)

For compositing, we’re interested in the edges that are significant at every scale,
which can be obtained by taking the difference of Gaussians at each scale:

Li = Gi − (K ∗ Gi), i = 0, . . . ,N − 1 (3.4)

The images Li form what is called a Laplacian pyramid, since the shape of the two-
dimensional Laplacian operator (also known as the “Mexican hat” function) is similar
to a difference of Gaussians at different scales (we’ll discuss this property more in
Section 4.1.4). As illustrated in the bottom row of Figure 3.4, each image in the Lapla-
cian pyramid can be viewed as a bandpass image at a different scale. The smallest
image LN in the pyramid is defined to be a small, highly blurred version of the original
image, given by GN , while the other images contain edges prevalent at different image
scales (for example, L0 contains the finest-detail edges). Therefore, we can write the
original image as the sum of the images of the pyramid:

I =
N∑

i=0

Li↑ (3.5)

Gaussian Kernel (blurring kernel)
60 Chapter 3. Image Compositing and Editing

G4

L4

G1

L1

G0

L0

G3

L3

G2

L2

Figure 3.4. The top row illustrates the Gaussian pyramid of an image I = G0, generated by
filtering with the matrix in Equation (3.3) and downsampling by 2 at each step. Each image is
a smaller, blurrier version of its predecessor. The bottom row illustrates the Laplacian pyramid
for the image I , generated by successive differencing of the images in the top row according to
Equation (3.4). Each Laplacian image contains the edges at successively coarser scales.

where ↑ indicates the images have been upsampled and interpolated to the original
image resolution before summing them.

To compose a source image S onto a target image T using Burt and Adelson’s
approach, we first compute the Laplacian pyramids LS and LT for both images. We

G0 ⇤K
G1 = (G0 ⇤K)#

3.1. Compositing Hard-Edged Pieces 59

3.1.2 Multiresolution Blending with a Laplacian Pyramid

Burt and Adelson [78] made a key observation about blending across a seam, rooted
in a frequency-domain interpretation of the images to be combined. The idea is sim-
ple: low-frequency components (i.e., smooth, gradual intensity variations) should be
blended across wide transition regions, while high-frequency components (i.e., edges
and regions with fine detail) should be blended across narrow transition regions.
These goals can be easily, simultaneously accomplished using a Laplacian pyramid,
a common multiresolution representation for images. In this section, we assume
that the images are grayscale, and that for color images each channel is processed
independently and recombined.

For a given image I , the first step is to blur it at different scales, by successively
filtering it with a Gaussian (or more generally, low-pass) kernel. At each step, the res-
olution of the image is halved in both dimensions, so that successive images appear
as smaller, blurrier versions of the original. The top row of Figure 3.4 illustrates sev-
eral steps of this process, which is called a Gaussian pyramid. That is, we create a
hierarchy of images given by

Gi = (K ∗ Gi−1)↓2, i = 1, . . . ,N (3.2)

where ∗ indicates two-dimensional convolution, ↓ 2 indicates downsampling by 2
in both dimensions, and G0 = I , the original image. K is an approximate Gaussian
kernel, or a low-pass filter whose elements sum to 1, such as

K = [−0.05, 0.25, 0.6, 0.25, −0.05]⊤ [−0.05, 0.25, 0.6, 0.25, −0.05] (3.3)

For compositing, we’re interested in the edges that are significant at every scale,
which can be obtained by taking the difference of Gaussians at each scale:

Li = Gi − (K ∗ Gi), i = 0, . . . ,N − 1 (3.4)

The images Li form what is called a Laplacian pyramid, since the shape of the two-
dimensional Laplacian operator (also known as the “Mexican hat” function) is similar
to a difference of Gaussians at different scales (we’ll discuss this property more in
Section 4.1.4). As illustrated in the bottom row of Figure 3.4, each image in the Lapla-
cian pyramid can be viewed as a bandpass image at a different scale. The smallest
image LN in the pyramid is defined to be a small, highly blurred version of the original
image, given by GN , while the other images contain edges prevalent at different image
scales (for example, L0 contains the finest-detail edges). Therefore, we can write the
original image as the sum of the images of the pyramid:

I =
N∑

i=0

Li↑ (3.5)

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Laplacian Pyramid60 Chapter 3. Image Compositing and Editing

G4

L4

G1

L1

G0

L0

G3

L3

G2

L2

Figure 3.4. The top row illustrates the Gaussian pyramid of an image I = G0, generated by
filtering with the matrix in Equation (3.3) and downsampling by 2 at each step. Each image is
a smaller, blurrier version of its predecessor. The bottom row illustrates the Laplacian pyramid
for the image I , generated by successive differencing of the images in the top row according to
Equation (3.4). Each Laplacian image contains the edges at successively coarser scales.

where ↑ indicates the images have been upsampled and interpolated to the original
image resolution before summing them.

To compose a source image S onto a target image T using Burt and Adelson’s
approach, we first compute the Laplacian pyramids LS and LT for both images. We

3.1. Compositing Hard-Edged Pieces 59

3.1.2 Multiresolution Blending with a Laplacian Pyramid

Burt and Adelson [78] made a key observation about blending across a seam, rooted
in a frequency-domain interpretation of the images to be combined. The idea is sim-
ple: low-frequency components (i.e., smooth, gradual intensity variations) should be
blended across wide transition regions, while high-frequency components (i.e., edges
and regions with fine detail) should be blended across narrow transition regions.
These goals can be easily, simultaneously accomplished using a Laplacian pyramid,
a common multiresolution representation for images. In this section, we assume
that the images are grayscale, and that for color images each channel is processed
independently and recombined.

For a given image I , the first step is to blur it at different scales, by successively
filtering it with a Gaussian (or more generally, low-pass) kernel. At each step, the res-
olution of the image is halved in both dimensions, so that successive images appear
as smaller, blurrier versions of the original. The top row of Figure 3.4 illustrates sev-
eral steps of this process, which is called a Gaussian pyramid. That is, we create a
hierarchy of images given by

Gi = (K ∗ Gi−1)↓2, i = 1, . . . ,N (3.2)

where ∗ indicates two-dimensional convolution, ↓ 2 indicates downsampling by 2
in both dimensions, and G0 = I , the original image. K is an approximate Gaussian
kernel, or a low-pass filter whose elements sum to 1, such as

K = [−0.05, 0.25, 0.6, 0.25, −0.05]⊤ [−0.05, 0.25, 0.6, 0.25, −0.05] (3.3)

For compositing, we’re interested in the edges that are significant at every scale,
which can be obtained by taking the difference of Gaussians at each scale:

Li = Gi − (K ∗ Gi), i = 0, . . . ,N − 1 (3.4)

The images Li form what is called a Laplacian pyramid, since the shape of the two-
dimensional Laplacian operator (also known as the “Mexican hat” function) is similar
to a difference of Gaussians at different scales (we’ll discuss this property more in
Section 4.1.4). As illustrated in the bottom row of Figure 3.4, each image in the Lapla-
cian pyramid can be viewed as a bandpass image at a different scale. The smallest
image LN in the pyramid is defined to be a small, highly blurred version of the original
image, given by GN , while the other images contain edges prevalent at different image
scales (for example, L0 contains the finest-detail edges). Therefore, we can write the
original image as the sum of the images of the pyramid:

I =
N∑

i=0

Li↑ (3.5)

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Multiresolution Blending
build Laplacian pyramid for composite image  
with Gaussian of Map M and Laplacians of Source S and Target T:

LC
0 = GM

0 LS
0 + (1�GM

0)LT
0

...

LC
N = GM

N LS
N + (1�GM

N)LT
N

IC =
NX

i=0

(LC
i)"

combine upsampled Laplacians to final composite image:

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Multiresolution Blending

3.1. Compositing Hard-Edged Pieces 61

also assume we have a binary mask M specifying the desired boundary, so that pixels
inside S have M = 1 and pixels inside T have M = 0, and compute a Gaussian pyramid
G for this mask. Then we compute a Laplacian pyramid {LI } for the composite image
as follows:

LI
i (x,y) = Gi(x,y)LS

i (x,y)+ (1 − Gi(x,y))LT
i (x,y), i = 0, . . . ,N (3.6)

We sum the Laplacian components according to Equation (3.5) to get the new image.
Effectively, the transition region is wider at lower spatial frequencies and narrower
at high spatial frequencies, producing a more natural transition between the source
and target. Figure 3.5 illustrates the process for the same images as in Figure 3.3; note
the higher quality of the composite and the relative lack of artifacts.

The general approach of a multiresolution filter-bank decomposition applies to
other operators besides the Laplacian. For example, a steerable pyramid [453] fur-
ther decomposes each bandpass image into the sum of orientation bands, which
can be used to selectively enhance or de-emphasize components at different ori-
entations. Another important alternative is a discrete wavelet transform (e.g.,
[277, 278]), which also represents images at different scales and can be computed very
efficiently.

(a) (b)

(c) (d) (e) (f)

(g)

Figure 3.5. Laplacian ImageCompositing. (a) The target image. (b) The source image, indicating
the boundary of the compositing region. (c) Several levels of the Laplacian pyramid for the target
image. (d) Several levels of the Laplacian pyramid for the source image. (e) Several levels of the
Gaussian pyramid for the compositing mask. (f) The combination of the source and target at each
level according to Equation (3.6). (g) The final composite.

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Multiresolution Blending

3.1. Compositing Hard-Edged Pieces 61

also assume we have a binary mask M specifying the desired boundary, so that pixels
inside S have M = 1 and pixels inside T have M = 0, and compute a Gaussian pyramid
G for this mask. Then we compute a Laplacian pyramid {LI } for the composite image
as follows:

LI
i (x,y) = Gi(x,y)LS

i (x,y)+ (1 − Gi(x,y))LT
i (x,y), i = 0, . . . ,N (3.6)

We sum the Laplacian components according to Equation (3.5) to get the new image.
Effectively, the transition region is wider at lower spatial frequencies and narrower
at high spatial frequencies, producing a more natural transition between the source
and target. Figure 3.5 illustrates the process for the same images as in Figure 3.3; note
the higher quality of the composite and the relative lack of artifacts.

The general approach of a multiresolution filter-bank decomposition applies to
other operators besides the Laplacian. For example, a steerable pyramid [453] fur-
ther decomposes each bandpass image into the sum of orientation bands, which
can be used to selectively enhance or de-emphasize components at different ori-
entations. Another important alternative is a discrete wavelet transform (e.g.,
[277, 278]), which also represents images at different scales and can be computed very
efficiently.

(a) (b)

(c) (d) (e) (f)

(g)

Figure 3.5. Laplacian ImageCompositing. (a) The target image. (b) The source image, indicating
the boundary of the compositing region. (c) Several levels of the Laplacian pyramid for the target
image. (d) Several levels of the Laplacian pyramid for the source image. (e) Several levels of the
Gaussian pyramid for the compositing mask. (f) The combination of the source and target at each
level according to Equation (3.6). (g) The final composite.

3.1. Compositing Hard-Edged Pieces 61

also assume we have a binary mask M specifying the desired boundary, so that pixels
inside S have M = 1 and pixels inside T have M = 0, and compute a Gaussian pyramid
G for this mask. Then we compute a Laplacian pyramid {LI } for the composite image
as follows:

LI
i (x,y) = Gi(x,y)LS

i (x,y)+ (1 − Gi(x,y))LT
i (x,y), i = 0, . . . ,N (3.6)

We sum the Laplacian components according to Equation (3.5) to get the new image.
Effectively, the transition region is wider at lower spatial frequencies and narrower
at high spatial frequencies, producing a more natural transition between the source
and target. Figure 3.5 illustrates the process for the same images as in Figure 3.3; note
the higher quality of the composite and the relative lack of artifacts.

The general approach of a multiresolution filter-bank decomposition applies to
other operators besides the Laplacian. For example, a steerable pyramid [453] fur-
ther decomposes each bandpass image into the sum of orientation bands, which
can be used to selectively enhance or de-emphasize components at different ori-
entations. Another important alternative is a discrete wavelet transform (e.g.,
[277, 278]), which also represents images at different scales and can be computed very
efficiently.

(a) (b)

(c) (d) (e) (f)

(g)

Figure 3.5. Laplacian ImageCompositing. (a) The target image. (b) The source image, indicating
the boundary of the compositing region. (c) Several levels of the Laplacian pyramid for the target
image. (d) Several levels of the Laplacian pyramid for the source image. (e) Several levels of the
Gaussian pyramid for the compositing mask. (f) The combination of the source and target at each
level according to Equation (3.6). (g) The final composite.

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Difficult Example3.2. Poisson Image Editing 63

(a)

(b)
(c)

Figure 3.7. (a) The target image and (b) the source image, indicating the region ! to be com-
posited. (c) Laplacian pyramid blending fails when the source and target regions’ colors differ
by too much.

that we want to solve

min
I (x,y)∈!

∫∫

!

∥∇I (x,y)−∇S(x,y)∥2 dx dy

s.t . I (x,y) = T (x,y) on ∂!

(3.7)

If we denote the integrand as

F (x,y) = ∥∇I (x,y)−∇S(x,y)∥2 =
(

∂I
∂x

− ∂S
∂x

)2

+
(

∂I
∂y

− ∂S
∂y

)2

(3.8)

then the calculus of variations implies that the I (x,y) that solves Equation (3.7) is a
solution of the Euler-Lagrange equation:

∂F
∂I

− d
dx

∂F
∂Ix

− d
dy

∂F
∂Iy

= 0 in ! (3.9)

Plugging Equation (3.8) into Equation (3.9) yields1

2

(
∂2I
∂x2 − ∂2S

∂x2

)

+ 2

(
∂2I
∂y2 − ∂2S

∂y2

)

= 0 in ! (3.10)

or more simply,

∇2I (x,y) = ∇2S(x,y) in ! (3.11)

s.t . I (x,y) = T (x,y) on ∂! (3.12)

1 Note that the term ∂F
∂I in Equation (3.9) equates to 0 in this case, since the partial is treated with

respect to the symbol I , and I doesn’t appear by itself in Equation (3.8).

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Poisson/Gradient domain

62 Chapter 3. Image Compositing and Editing

However, none of these pyramid-style methods are well suited to the situation
when the source and target colors are not already well matched, as we’ll see in the
next section.

3.2 POISSON IMAGE EDITING

An appealing approach to compositing, pioneered by Pérez et al. [364], seam-
lessly merges the source region into the target image using an application of the
Poisson equation. To understand the Poisson compositing technique, we need to
define several concepts from continuous partial differential equations and vector
calculus, which we then translate into the discrete world to apply to digital images.

3.2.1 The Basic Idea

In place of a binary compositing mask M , we assume that the source image S is
defined over a closed region!; the boundary of this region is denoted as ∂!. Figure 3.6
illustrates these terms. The target image T is assumed to be defined over some
rectangular region in R2.

Formally, the composite image we want to construct, I (x,y), exactly agrees with
T (x,y) outside of !, and should “look like” S(x,y) inside !. The problem is that if we
directly place the source region on top of T and blend across the edge, for example
using the Laplacian pyramid approach, the result can be unacceptable due to color
mismatches, as illustrated in Figure 3.7.

What can we do to make the interior of ! “look like” the source, but avoid the color
mismatch problem? The key idea is to transfer the edges of the source image into !,
and then compute colors inside the region that are as harmonious as possible with
the pixels from T surrounding !. That is, we want the gradient of the desired image,
∇I (x,y), inside! to be as close as possible to∇S(x,y), subject to the constraint that the
result must match the existing values of T (x,y) on the boundary ∂!. This approach is
generally known as gradient-domain compositing. In continuous terms, this means

Ω

∂Ω

Source image

Figure 3.6. Terminology for Poisson image editing.

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Problem Formulation

3.2. Poisson Image Editing 63

(a)

(b)
(c)

Figure 3.7. (a) The target image and (b) the source image, indicating the region ! to be com-
posited. (c) Laplacian pyramid blending fails when the source and target regions’ colors differ
by too much.

that we want to solve

min
I (x,y)∈!

∫∫

!

∥∇I (x,y)−∇S(x,y)∥2 dx dy

s.t . I (x,y) = T (x,y) on ∂!

(3.7)

If we denote the integrand as

F (x,y) = ∥∇I (x,y)−∇S(x,y)∥2 =
(

∂I
∂x

− ∂S
∂x

)2

+
(

∂I
∂y

− ∂S
∂y

)2

(3.8)

then the calculus of variations implies that the I (x,y) that solves Equation (3.7) is a
solution of the Euler-Lagrange equation:

∂F
∂I

− d
dx

∂F
∂Ix

− d
dy

∂F
∂Iy

= 0 in ! (3.9)

Plugging Equation (3.8) into Equation (3.9) yields1

2

(
∂2I
∂x2 − ∂2S

∂x2

)

+ 2

(
∂2I
∂y2 − ∂2S

∂y2

)

= 0 in ! (3.10)

or more simply,

∇2I (x,y) = ∇2S(x,y) in ! (3.11)

s.t . I (x,y) = T (x,y) on ∂! (3.12)

1 Note that the term ∂F
∂I in Equation (3.9) equates to 0 in this case, since the partial is treated with

respect to the symbol I , and I doesn’t appear by itself in Equation (3.8).

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Problem Formulation

3.2. Poisson Image Editing 63

(a)

(b)
(c)

Figure 3.7. (a) The target image and (b) the source image, indicating the region ! to be com-
posited. (c) Laplacian pyramid blending fails when the source and target regions’ colors differ
by too much.

that we want to solve

min
I (x,y)∈!

∫∫

!

∥∇I (x,y)−∇S(x,y)∥2 dx dy

s.t . I (x,y) = T (x,y) on ∂!

(3.7)

If we denote the integrand as

F (x,y) = ∥∇I (x,y)−∇S(x,y)∥2 =
(

∂I
∂x

− ∂S
∂x

)2

+
(

∂I
∂y

− ∂S
∂y

)2

(3.8)

then the calculus of variations implies that the I (x,y) that solves Equation (3.7) is a
solution of the Euler-Lagrange equation:

∂F
∂I

− d
dx

∂F
∂Ix

− d
dy

∂F
∂Iy

= 0 in ! (3.9)

Plugging Equation (3.8) into Equation (3.9) yields1

2

(
∂2I
∂x2 − ∂2S

∂x2

)

+ 2

(
∂2I
∂y2 − ∂2S

∂y2

)

= 0 in ! (3.10)

or more simply,

∇2I (x,y) = ∇2S(x,y) in ! (3.11)

s.t . I (x,y) = T (x,y) on ∂! (3.12)

1 Note that the term ∂F
∂I in Equation (3.9) equates to 0 in this case, since the partial is treated with

respect to the symbol I , and I doesn’t appear by itself in Equation (3.8).

3.2. Poisson Image Editing 63

(a)

(b)
(c)

Figure 3.7. (a) The target image and (b) the source image, indicating the region ! to be com-
posited. (c) Laplacian pyramid blending fails when the source and target regions’ colors differ
by too much.

that we want to solve

min
I (x,y)∈!

∫∫

!

∥∇I (x,y)−∇S(x,y)∥2 dx dy

s.t . I (x,y) = T (x,y) on ∂!

(3.7)

If we denote the integrand as

F (x,y) = ∥∇I (x,y)−∇S(x,y)∥2 =
(

∂I
∂x

− ∂S
∂x

)2

+
(

∂I
∂y

− ∂S
∂y

)2

(3.8)

then the calculus of variations implies that the I (x,y) that solves Equation (3.7) is a
solution of the Euler-Lagrange equation:

∂F
∂I

− d
dx

∂F
∂Ix

− d
dy

∂F
∂Iy

= 0 in ! (3.9)

Plugging Equation (3.8) into Equation (3.9) yields1

2

(
∂2I
∂x2 − ∂2S

∂x2

)

+ 2

(
∂2I
∂y2 − ∂2S

∂y2

)

= 0 in ! (3.10)

or more simply,

∇2I (x,y) = ∇2S(x,y) in ! (3.11)

s.t . I (x,y) = T (x,y) on ∂! (3.12)

1 Note that the term ∂F
∂I in Equation (3.9) equates to 0 in this case, since the partial is treated with

respect to the symbol I , and I doesn’t appear by itself in Equation (3.8).

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Problem Formulation3.2. Poisson Image Editing 65

Each pixel p = (x,y) ∈ ! generates a linear equation in the unknown values of
I (x,y). There are two cases, depending on the 4-neighborhood of p (denoted N(p)):

1. N(p) ⊂ !. In this case — such as pixel A in Figure 3.8 — the neighborhood of
the pixel is fully contained in !. There are no boundary conditions and we use
the usual approximations of the Laplacian:

I (x + 1,y)+ I (x − 1,y)+ I (x,y + 1)+ I (x,y − 1)− 4I (x,y)

= S(x + 1,y)+ S(x − 1,y)+ S(x,y + 1)+ S(x,y − 1)− 4S(x,y) (3.14)

2. N(p) ̸⊂ !. In this case — such as pixel B in Figure 3.8 — the pixel is on the edge
of the source region, and the estimate of the Laplacian includes pixels from
the target that are specified by the boundary condition:

⎛

⎝
∑

q∈N (p)∩!

I (q)

⎞

⎠+

⎛

⎝
∑

q∈N (p)∩∂!

T (q)

⎞

⎠− 4I (x,y)

= S(x + 1,y)+ S(x − 1,y)+ S(x,y + 1)+ S(x,y − 1)− 4S(x,y) (3.15)

Typically, the region ! is well inside the target image (i.e., surrounded by a
healthy border of target pixels). However, if ! runs all the way to the image bor-
der, Equation (3.14) and Equation (3.15) need to be modified to avoid querying pixel
values outside the image. For example, if the upper left-hand corner (1,1) ∈ !, we
would modify Equation (3.14) to

I (2,1)+ I (1,2)− 2I (1,1) = S(2,1)+ S(1,2)− 2S(1,1) (3.16)

Collecting together all the equations for each p ∈ ! results in a large, sparse linear
system. There are as many unknowns as pixels in !, but at most five nonzero elements
per row, with a regular structure on where these elements occur.4

Solving the Poisson equation for the example images in Figure 3.7 results in
the improved composite in Figure 3.9. As with the Laplacian pyramid, the Poisson
equation was applied to each color channel independently. We can see that the over-
all colors of the target image merge naturally into the source region, while keeping
the sharp detail of the source region intact.

We can obtain a slightly different interpretation of Equations (3.11)–(3.12) by
defining E(x,y) = I (x,y)− S(x,y) and rearranging:

∇2E(x,y) = 0 in ! (3.17)

s.t . E(x,y) = T (x,y)− S(x,y) on ∂! (3.18)

That is, E(x,y) is a “correction” that we add to the source pixels to get the final image
pixels. We can think of E(x,y) as a smooth membrane that interpolates the samples
of the difference between the target and source pixels around the boundary of !.
Now Equation (3.17) is a Laplace equation, which implies that the solution E(x,y) is
a harmonic function. Once we compute E(x,y), we recover I (x,y) = S(x,y)+E(x,y).

4 In fact, the same kinds of systems occurred when we considered the matting problem in Sections
2.4 and 2.6.

64 Chapter 3. Image Compositing and Editing

A

B

Figure 3.8. Discrete sets required for solving the Poisson equation using digital images. A small
image region is shown. The lightly shaded squares comprise !; the darker-shaded squares
comprise ∂!.

where we have used the common notation of ∇2I = ∂2I
∂x2 + ∂2I

∂y2 for the Laplacian
operator.

An equation of the form (3.11) (with a generic right-hand side) is called a Poisson
equation, and a constraint of the form (3.12) is called a Dirichlet boundary condition.
If the right-hand side of Equation (3.11) is zero, it is called a Laplace equation2; if the
right-hand side of Equation (3.12) is zero, it is called a Neumann boundary condition.

Before we discuss how the Poisson equation is solved in practice, we mention
an important generalization. In Equation (3.11), we assumed that the Laplacian
of the new image was equal to the Laplacian of another image (i.e., the source)
inside !. However, the technique is more powerful if we minimize the difference
between the Laplacian of the new image and some arbitrary guidance vector field
(Sx(x,y),Sy(x,y)) at every pixel (x,y). The distinction is that the guidance vector field
need not arise by taking the gradient of some original image (in which case it is called a
non-conservative field). The Poisson equation in Equation (3.11) slightly changes to

∇2I (x,y) = div

[
Sx(x,y)

Sy(x,y)

]

= ∂Sx

∂x
+ ∂Sy

∂y
in ! (3.13)

where div represents the divergence of an arbitrary vector field.3

To solve the Poisson equation for a real-world pixellated image, we create a discrete
version of Equations (3.11)–(3.12). As illustrated in Figure 3.8, ! is a user-defined
collection of pixels (i.e., the pixels where M = 1 in the previous section) and ∂! is the
set of pixels not in ! that have one of their 4-neighbors in !. The source image S must
at least be defined on ! plus a one-pixel-wide dilation of !.

2 The Laplace equation is also sometimes known as the heat equation or diffusion equation.
3 For a readable refresher on vector calculus and derivatives, see the book by Schey [427].

3.2. Poisson Image Editing 65

Each pixel p = (x,y) ∈ ! generates a linear equation in the unknown values of
I (x,y). There are two cases, depending on the 4-neighborhood of p (denoted N(p)):

1. N(p) ⊂ !. In this case — such as pixel A in Figure 3.8 — the neighborhood of
the pixel is fully contained in !. There are no boundary conditions and we use
the usual approximations of the Laplacian:

I (x + 1,y)+ I (x − 1,y)+ I (x,y + 1)+ I (x,y − 1)− 4I (x,y)

= S(x + 1,y)+ S(x − 1,y)+ S(x,y + 1)+ S(x,y − 1)− 4S(x,y) (3.14)

2. N(p) ̸⊂ !. In this case — such as pixel B in Figure 3.8 — the pixel is on the edge
of the source region, and the estimate of the Laplacian includes pixels from
the target that are specified by the boundary condition:

⎛

⎝
∑

q∈N (p)∩!

I (q)

⎞

⎠+

⎛

⎝
∑

q∈N (p)∩∂!

T (q)

⎞

⎠− 4I (x,y)

= S(x + 1,y)+ S(x − 1,y)+ S(x,y + 1)+ S(x,y − 1)− 4S(x,y) (3.15)

Typically, the region ! is well inside the target image (i.e., surrounded by a
healthy border of target pixels). However, if ! runs all the way to the image bor-
der, Equation (3.14) and Equation (3.15) need to be modified to avoid querying pixel
values outside the image. For example, if the upper left-hand corner (1,1) ∈ !, we
would modify Equation (3.14) to

I (2,1)+ I (1,2)− 2I (1,1) = S(2,1)+ S(1,2)− 2S(1,1) (3.16)

Collecting together all the equations for each p ∈ ! results in a large, sparse linear
system. There are as many unknowns as pixels in !, but at most five nonzero elements
per row, with a regular structure on where these elements occur.4

Solving the Poisson equation for the example images in Figure 3.7 results in
the improved composite in Figure 3.9. As with the Laplacian pyramid, the Poisson
equation was applied to each color channel independently. We can see that the over-
all colors of the target image merge naturally into the source region, while keeping
the sharp detail of the source region intact.

We can obtain a slightly different interpretation of Equations (3.11)–(3.12) by
defining E(x,y) = I (x,y)− S(x,y) and rearranging:

∇2E(x,y) = 0 in ! (3.17)

s.t . E(x,y) = T (x,y)− S(x,y) on ∂! (3.18)

That is, E(x,y) is a “correction” that we add to the source pixels to get the final image
pixels. We can think of E(x,y) as a smooth membrane that interpolates the samples
of the difference between the target and source pixels around the boundary of !.
Now Equation (3.17) is a Laplace equation, which implies that the solution E(x,y) is
a harmonic function. Once we compute E(x,y), we recover I (x,y) = S(x,y)+E(x,y).

4 In fact, the same kinds of systems occurred when we considered the matting problem in Sections
2.4 and 2.6.

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Results
66 Chapter 3. Image Compositing and Editing

Figure 3.9. Successful image composition using the Poisson equation.

(a) (b) (c)

Figure 3.10. (a) The region ! includes some key features of the target image. (b) Poisson image
compositing without modification creates unacceptable visual artifacts; the mountain’s color is
smudged into the source region. (c) Using mixed gradients to preserve the target edges in ! is
a big improvement.

We’ve assumed that the pixels from the source image entirely overwrite whatever
pixels used to be in the same place in the target image. However, in some cases, it
may be appropriate for the original target pixels to “show through.” For example, we
may want to maintain some of the texture of the target image, or give the sense that
the source pixels are slightly transparent. In this case, we could use a guidance vector
field given by a mixture of the source and target gradients, such as:

[
Sx(x,y)

Sy(x,y)

]

=
{

∇T (x,y) if ∥∇T (x,y)∥ > ∥∇S(x,y)∥
∇S(x,y) otherwise

(3.19)

This would preserve whatever gradients were stronger inside !. This is an example
of a non-conservative vector field, so we must use Equation (3.13), not Equation (3.11)
(though the numerical implementation is basically the same). Figure 3.10 illustrates
an example.

IVD - Institut für Visualisierung und DatenanalyseBoris Neubert - Visual Computing 2016

Problem

66 Chapter 3. Image Compositing and Editing

Figure 3.9. Successful image composition using the Poisson equation.

(a) (b) (c)

Figure 3.10. (a) The region ! includes some key features of the target image. (b) Poisson image
compositing without modification creates unacceptable visual artifacts; the mountain’s color is
smudged into the source region. (c) Using mixed gradients to preserve the target edges in ! is
a big improvement.

We’ve assumed that the pixels from the source image entirely overwrite whatever
pixels used to be in the same place in the target image. However, in some cases, it
may be appropriate for the original target pixels to “show through.” For example, we
may want to maintain some of the texture of the target image, or give the sense that
the source pixels are slightly transparent. In this case, we could use a guidance vector
field given by a mixture of the source and target gradients, such as:

[
Sx(x,y)

Sy(x,y)

]

=
{

∇T (x,y) if ∥∇T (x,y)∥ > ∥∇S(x,y)∥
∇S(x,y) otherwise

(3.19)

This would preserve whatever gradients were stronger inside !. This is an example
of a non-conservative vector field, so we must use Equation (3.13), not Equation (3.11)
(though the numerical implementation is basically the same). Figure 3.10 illustrates
an example.

