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Figure 2.9. (a) A tougher example of a scatterplot of the colors in labeled foreground and back-
ground regions. Black dots represent background and white dots represent foreground. In this
case, the foreground and background densities are neither well separated nor well represented
by a single Gaussian. (b) Gaussian mixture models fit to the foreground and background samples
do a better job of separating the distributions.

F U Figure 2.10. The local foreground and back-
ground samples in a window around each
pixel can be used to compute the distribu-
tions for Bayesian matting.

distributions remains, but the Gaussian mixture components are better separated
and model the data more tightly.

In the multiple-Gaussian case, solving Equation (2.10) directly is no longer
straightforward, but Chuang et al. [99] suggested a simple approach. We consider
each possible pair of (foreground, background) Gaussians independently, and solve
for the best F , B, and α by alternating Equations (2.16)–(2.17). Then we compute the
log likelihood given by the argument of Equation (2.10) for each result. We need to
include the determinants of"F and"B when evaluating log P(F )and log P(B) for each
pair, since they are not all the same — these factors were ignored in Equation (2.15).
Finally, we choose the estimates for F , B, and α that produce the largest value of
Equation (2.10).

For complicated foregrounds and backgrounds, it makes sense to determine the
foreground and background distributions in Equation (2.15) locally at a pixel, rather
than globally across the whole image. This can be accomplished by creating a small
(relative to the image size) window around the pixel of interest and using the colors of
F and B inside the window to build the local pdfs (Figure 2.10). As F , B, and α for pixels
inside both the window and the unknown region are estimated, they can supplement
the samples. Generally, the estimation begins at the edges of the unknown area and

1) better FG and BG model
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distributions remains, but the Gaussian mixture components are better separated
and model the data more tightly.

In the multiple-Gaussian case, solving Equation (2.10) directly is no longer
straightforward, but Chuang et al. [99] suggested a simple approach. We consider
each possible pair of (foreground, background) Gaussians independently, and solve
for the best F , B, and α by alternating Equations (2.16)–(2.17). Then we compute the
log likelihood given by the argument of Equation (2.10) for each result. We need to
include the determinants of"F and"B when evaluating log P(F )and log P(B) for each
pair, since they are not all the same — these factors were ignored in Equation (2.15).
Finally, we choose the estimates for F , B, and α that produce the largest value of
Equation (2.10).

For complicated foregrounds and backgrounds, it makes sense to determine the
foreground and background distributions in Equation (2.15) locally at a pixel, rather
than globally across the whole image. This can be accomplished by creating a small
(relative to the image size) window around the pixel of interest and using the colors of
F and B inside the window to build the local pdfs (Figure 2.10). As F , B, and α for pixels
inside both the window and the unknown region are estimated, they can supplement
the samples. Generally, the estimation begins at the edges of the unknown area and

2) local estimation

3) so far: constant distribution for alpha values
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Taking the log gives an expression in terms of log likelihoods:

arg max
F ,B,α

log P(I |F ,B,α)+ log P(F )+ log P(B)+ log P(α) (2.10)

The first term in Equation (2.10) is a data term that reflects how likely the image
color is given values for F , B, and α. Since for a good solution the matting equation
(2.2) should hold, the first term can be modeled as:

P(I |F ,B,α) ∝ exp

(

− 1
σ 2

d

∥I − (αF + (1 −α)B)∥2
2

)

(2.11)

where σd is a tunable parameter that reflects the expected deviation from the matting
assumption. Thus,

log P(I |F ,B,α) = − 1
σ 2

d

∥I − (αF + (1 −α)B)∥2
2 (2.12)

The other terms in Equation (2.10) are prior probabilities on the foreground,
background, and α distributions. This is where the trimap comes in. Figure 2.8 illus-
trates an example of a user-created trimap and scatterplots of pixel colors in RGB
space corresponding to the background and foreground. In this example, since the
background colors are very similar to each other and the foreground mostly contains
shades of gray, we can fit Gaussian distributions to each collection of intensities.

That is, for a color B, we estimate a pdf for the background given by:

fB(B) = 1
(2π)3/2|$B|1/2 exp

(
−1

2
(B −µB)⊤$−1

B (B −µB)

)
(2.13)
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Figure 2.8. (a) A user-created trimap corresponding to the upper left image in Figure 2.5, and
(b) a scatterplot of the colors in the labeled foreground and background regions. Black dots
represent background and white dots represent foreground. Since the image was taken against
a blue screen, the background colors are tightly clustered in one corner of RGB space. Both the
foreground and background color distributions are well approximated by Gaussians (ellipses).
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distributions remains, but the Gaussian mixture components are better separated
and model the data more tightly.

In the multiple-Gaussian case, solving Equation (2.10) directly is no longer
straightforward, but Chuang et al. [99] suggested a simple approach. We consider
each possible pair of (foreground, background) Gaussians independently, and solve
for the best F , B, and α by alternating Equations (2.16)–(2.17). Then we compute the
log likelihood given by the argument of Equation (2.10) for each result. We need to
include the determinants of"F and"B when evaluating log P(F )and log P(B) for each
pair, since they are not all the same — these factors were ignored in Equation (2.15).
Finally, we choose the estimates for F , B, and α that produce the largest value of
Equation (2.10).

For complicated foregrounds and backgrounds, it makes sense to determine the
foreground and background distributions in Equation (2.15) locally at a pixel, rather
than globally across the whole image. This can be accomplished by creating a small
(relative to the image size) window around the pixel of interest and using the colors of
F and B inside the window to build the local pdfs (Figure 2.10). As F , B, and α for pixels
inside both the window and the unknown region are estimated, they can supplement
the samples. Generally, the estimation begins at the edges of the unknown area and
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in Figures 2.8 and 2.9 — the fitted Gaussians are generally long and skinny. Levin
et al. [271] exploited this observation in an elegant algorithm called closed-form
matting.

2.4.1 The Color Line Assumption

Let’s assume that within a small window wj around each pixel j, the sets of foreground
and background intensities each lie on a straight line in RGB space. That is, for each
pixel i in wj ,

Fi = βiF1 + (1 −βi)F2

Bi = γiB1 + (1 − γi)B2
(2.19)

Here, F1 and F2 are two points on the line of foreground colors, and βi represents
the fraction of the way a given foreground color Fi is between these two points.
The same idea applies to the background colors. This idea, called the color line
assumption, is illustrated in Figure 2.12.

Levin et al.’s first observation was that under the color line assumption, the α value
for every pixel in the window was simply related to the intensity by

αi = a⊤Ii + b (2.20)

where a is a 3 × 1 vector, b is a scalar, and the same a and b apply to every pixel
in the window. That is, we can compute α for each pixel in the window as a linear
combination of the RGB values at that pixel, plus an offset. While this may not be
intuitive, let’s show why Equation (2.20) is algebraically true.

First we plug Equation (2.19) into the matting equation (2.2) to obtain:

Ii = αi(βiF1 + (1 −βi)F2)+ (1 −αi)(γiB1 + (1 − γi)B2) (2.21)

If we rearrange the terms in this equation, we get a 3×3 system of linear equations:

[F2 − B2 F1 − F2 B1 − B2]

⎡

⎢⎣
αi

αiβi

(1 −αi)γi

⎤

⎥⎦= Ii − B2 (2.22)

Note that the 3×3 matrix on the left-hand side only depends on F1, F2, B1, and B2,
which we assumed were constant in the window. We multiply by the inverse of this

red green

blue

F1

F2Fi

B1

B2

Bi

red green

blue

γi

βi

Figure 2.12. The color line assumption says that each pixel Ii in a small window of the image
is a mix of a foreground color Fi and a background color Bi , where each of these colors lies on a
straight line in RGB space.
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Figure 2.12. The color line assumption says that each pixel Ii in a small window of the image
is a mix of a foreground color Fi and a background color Bi , where each of these colors lies on a
straight line in RGB space. Color Line Assumption:

FG and BG colors for small neighborhoods lie on a line in RGB space.
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Consequences for Matte?
Fi = �iF1 + (1� �i)F2

Bi = �iB1 + (1� �i)B2

↵i = aT Ii + b

for all pixels in window.

If CLA holds:
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Proof
Ii = ↵iFi + (1� ↵i)Bi

Fi = �iF1 + (1� �i)F2

Bi = �iB1 + (1� �i)B2
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11/5/2015 Virtual reality presents a forest from an animal's perspective

http://www.dezeen.com/2015/11/02/in-the-eyes-of-the-animal-virtual-reality-installation-marshmallow-laser-feast-abandon-normal-devices-festival-england/ 8/36

http://www.dezeen.com/2015/11/02/in-the-eyes-of-the-animal-virtual-reality-
installation-marshmallow-laser-feast-abandon-normal-devices-festival-england/
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VFX Examples

http://www.premiumbeat.com/blog/vfx-didnt-realize-happening/



Title

Compute Matte

• Setup a cost function J 

• find alpha for each pixel and a,b for each window, s.t. the CLA is 
satisfied.
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(↵i � (aTj Ii + bj))
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Cost Function J

J(↵, a, b) =
NX

j=1

X

i2wj

(↵i � (aTj Ii + bj))
2

Q: number of unknowns? knowns? 
Q: Why better then BM?
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minimizing each of these is a LSP.
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where W is the number of pixels in the window and {I j
1, . . . , I j

W } and {αj
1, . . . ,αj

W } rep-
resent the ordered list of image colors and α values inside window j. More compactly,
we can write Equation (2.27) as

J (α,a,b) =
N∑

j=1

∥∥∥∥∥Gj

[
aj

bj

]

− ᾱj

∥∥∥∥∥

2

(2.28)

where ᾱj is a (W + 3) × 1 vector containing the α’s in window j followed by three
0’s. If we suppose that the matte is known, then this vector is constant and we can
minimize Equation (2.27) for the individual {aj ,bj} as a standard linear system:

[
a∗

j
b∗

j

]

= (G⊤
j Gj)

−1G⊤
j ᾱj (2.29)

That is, the optimal a and b in each window for a given matte α are linear functions
of the α values. This means we can substitute Equation (2.29) into Equation (2.26)
to get

J (α) = min
a,b

J (α,a,b) (2.30)

= min
a,b

N∑

j=1

∥∥∥∥∥Gj

[
aj

bj

]

− ᾱj

∥∥∥∥∥

2

(2.31)

=
N∑

j=1

∥∥∥∥∥Gj

[
a∗

j
b∗

j

]

− ᾱj

∥∥∥∥∥

2

(2.32)

=
N∑

j=1

∥∥∥Gj(G⊤
j Gj)

−1G⊤
j ᾱj − ᾱj

∥∥∥
2

(2.33)

=
N∑

j=1

ᾱ⊤
j

[
I(W +3)×(W +3) − Gj(G⊤

j Gj)
−1G⊤

j

]
ᾱj (2.34)

= α⊤Lα (2.35)

In the last equation, we’ve collected all of the equations for the windows into a
single matrix equation for the N ×1 vector α. The N ×N matrix L is called the matting
Laplacian. It is symmetric, positive semidefinite, and quite sparse if the window size
is small. This matrix plays a key role in the rest of the chapter.

Working out the algebra in Equation (2.34), one can compute the elements of the
matting Laplacian as:

L(i, j) =
∑

k|(i,j)∈wk

[
δij − 1

W

(
1 + (Ii −µk)⊤

(
#k + ε

W
I3×3

)−1
(Ij −µk)

)]
(2.36)

where µk and #k are the mean and covariance matrix of the colors in window k and
δij is the Kronecker delta. Frequently, the windows are taken to be 3×3, so W = 9. The
notation k|(i, j) ∈ wk in Equation (2.36) means that we only sum over the windows k
that contain both pixels i and j; depending on the configuration of the pixels, there
could be from 0 to 6 windows in the sum (see Problem 2.11).

J(↵, a, b) =
NX

j=1

����Gi
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L - Matting Laplacian
J(↵) =

NX

j=1

kGj(G
T
j Gj)

�1GT
j ↵i � ↵ik2

J(↵) = ↵TL↵

2L↵ = 0

Null vector of L solves matting equation.

minimize J as 
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Adding Constrains
force some pixel to have

↵ = 0 (BG)

↵ = 1 (FG)

24 Chapter 2. Image Matting

Alternately, we can write

L(i, j) =
{ ∑

k A(i,k) if i = j
−A(i, j) if i ̸= j

(2.37)

where

A(i, j) =
∑

k|(i,j)∈wk

1
W

[
1 + (Ii −µk)⊤

(
!k + ε

W
I3×3

)−1
(Ij −µk)

]
(2.38)

The matrix A specified by Equation (2.38) is sometimes called the matting affinity.
From Equation (2.35) we can see that minimizing J (α) corresponds to solving the

linear system Lα = 0. That is, we must simply find a vector in the nullspace of L.

2.4.3 Constraining the Matte

However, so far we haven’t taken into account any user-supplied knowledge of where
the matte values are known; without this knowledge, the solution is ambiguous; for
example, it turns out that any constant α matte is in the nullspace of L. In fact,
the dimension of the nullspace is large (e.g., each of the matrices in the sum of
Equation (2.34) has nullspace of dimension four [454]). Therefore, we rely on user
scribbles to denote known foreground and background pixels and constrain the
solution. That is, the problem becomes:

min α⊤Lα

s.t . αi = 1 i ∈ F
αi = 0 i ∈ B

(2.39)

Another way to phrase this is:

min α⊤Lα +λ(α −αK )⊤D(α −αK ) (2.40)

where αK is an N × 1 vector equal to 1 at known foreground pixels and 0 everywhere
else, and D is a diagonal matrix whose diagonal elements are equal to 1 when a user
has specified a F or B scribble at that pixel and 0 elsewhere. λ is set to be a very
large number (e.g., 100) so that the solution is forced to agree closely with the user’s
scribbles. Setting the derivative of Equation (2.40) to 0 results in the sparse linear
system:

(L +λD)α = λαK (2.41)

Levin et al. showed that if:

• the color line model was satisfied exactly in every pixel window,
• the image was formed by exactly applying the matting equation to some

foreground and background images,
• the user scribbles were consistent with the ground-truth matte, and
• ε = 0 in Equation (2.26),

then the ground-truth matte will solve Equation (2.41). However, it’s important to
realize that the user might need to experiment with scribble quantity and placement
to ensure that the solution of Equation (2.41) is acceptable, since the nullspace of the
left-hand side may be non-trivial (see more in Section 2.4.5). Figure 2.13 illustrates an
example of using closed-form matting using only a few scribbles on a natural image.
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Alternately, we can write

L(i, j) =
{ ∑

k A(i,k) if i = j
−A(i, j) if i ̸= j

(2.37)

where

A(i, j) =
∑

k|(i,j)∈wk

1
W

[
1 + (Ii −µk)⊤

(
!k + ε

W
I3×3

)−1
(Ij −µk)

]
(2.38)

The matrix A specified by Equation (2.38) is sometimes called the matting affinity.
From Equation (2.35) we can see that minimizing J (α) corresponds to solving the

linear system Lα = 0. That is, we must simply find a vector in the nullspace of L.

2.4.3 Constraining the Matte

However, so far we haven’t taken into account any user-supplied knowledge of where
the matte values are known; without this knowledge, the solution is ambiguous; for
example, it turns out that any constant α matte is in the nullspace of L. In fact,
the dimension of the nullspace is large (e.g., each of the matrices in the sum of
Equation (2.34) has nullspace of dimension four [454]). Therefore, we rely on user
scribbles to denote known foreground and background pixels and constrain the
solution. That is, the problem becomes:

min α⊤Lα

s.t . αi = 1 i ∈ F
αi = 0 i ∈ B

(2.39)

Another way to phrase this is:

min α⊤Lα +λ(α −αK )⊤D(α −αK ) (2.40)

where αK is an N × 1 vector equal to 1 at known foreground pixels and 0 everywhere
else, and D is a diagonal matrix whose diagonal elements are equal to 1 when a user
has specified a F or B scribble at that pixel and 0 elsewhere. λ is set to be a very
large number (e.g., 100) so that the solution is forced to agree closely with the user’s
scribbles. Setting the derivative of Equation (2.40) to 0 results in the sparse linear
system:

(L +λD)α = λαK (2.41)

Levin et al. showed that if:

• the color line model was satisfied exactly in every pixel window,
• the image was formed by exactly applying the matting equation to some

foreground and background images,
• the user scribbles were consistent with the ground-truth matte, and
• ε = 0 in Equation (2.26),

then the ground-truth matte will solve Equation (2.41). However, it’s important to
realize that the user might need to experiment with scribble quantity and placement
to ensure that the solution of Equation (2.41) is acceptable, since the nullspace of the
left-hand side may be non-trivial (see more in Section 2.4.5). Figure 2.13 illustrates an
example of using closed-form matting using only a few scribbles on a natural image.
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(a) (b) (c)

Figure 2.13. (a) An image with (b) foreground and background scribbles. (c) The α matte com-
puted using closed-form matting, showing that good estimates are produced in fine detail
regions.

Choosing the right window size for closed-form matting can be a tricky problem
depending on the resolution of the image and the fuzziness of the foreground object
(which may not be the same in all parts of the image). He et al. [192] considered
this issue, and showed how the linear system in Equation (2.41) could be efficiently
solved by using relatively large windows whose sizes depend on the local width of the
uncertain region U in the trimap. The advantage of using large windows is that many
distant pixels are related to each other, and the iterative methods typically used to
solve large systems like Equation (2.41) converge more quickly.

2.4.4 Recovering F and B from α

After solving the linear system in Equation (2.41) we obtain α values but not estimates
of F and B. One way to get these estimates is to treat α and I as constant in the matting
equation and solve it for F and B. Since this problem is still underconstrained, Levin
et al. suggested incorporating the expectation that F and B vary smoothly (i.e., have
small derivatives), especially in places where the matte has edges. The corresponding
problem is:

min
Fi ,Bi

N∑

i=1

∥Ii − (αiFi + (1 −αi)Bi)∥2

+|∇xαi|
(
∥∇xFi∥2 + ∥∇xBi∥2

)
+|∇yαi|

(
∥∇yFi∥2 + ∥∇yBi∥2

)
(2.42)

where the notation ∇xI represents the gradient of image I in the x direction,
which is a scalar for a grayscale image and a 3-vector for a color image. Solving
Equation (2.42) results in a sparse linear system instead of a problem solved indepen-
dently at every pixel, since the gradients force interdependence between the pixels
(see Problem 2.18).

2.4.5 The Matting Laplacian’s Eigenvectors

Levin et al. observed that even before the user imposes any scribbles on the image to
be matted, the eigenvectors of the matting Laplacian corresponding to the smallest
eigenvalues reveal a surprising amount of information about potentially good mat-
tes. For example, Figure 2.14 illustrates the eight eigenvectors corresponding to the
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