
GPU Computing: Image Convolution

Dipl.-Ing. Jan Novák∗ Dipl.-Inf. Gábor Liktor† Prof. Dr.-Ing. Carsten Dachsbacher‡

Abstract

Convolution of two functions is an important mathematical opera-
tion that found heavy application in signal processing. In computer
graphics and image processing fields, we usually work with dis-
crete functions (e.g. an image) and apply a discrete form of the
convolution to remove high frequency noise, sharpen details, detect
edges, or otherwise modulate the frequency domain of the image. In
this assignment, we will discuss an efficient implementation of im-
age convolution filters on the GPU. A general 2D convolution has a
high bandwidth requirement as the final value of a given pixel is de-
termined by several neighboring pixels. Since memory bandwidth
is usually the main limiting factor of algorithm’s performance, our
optimization techniques will focus on minimizing global memory
accesses during the computations.

The deadline for the assignment is 15th December.

1 Image Convolution

1.1 Introduction

Convolution is a mathematical operation on two signals f and g,
defined as:

(f ∗ g)(t) =
∫ ∞
−∞

f(τ)g(t− τ)dτ.

(f ∗ g)(t) is frequently considered as the filtered variant of the f(t)
input signal, where g(t) is the filtering kernel. One of the fun-
damental properties of this operator is defined by the convolution
theorem, which states that

F {f ∗ g} = kF {f}F {g}

Where F is the Fourier-transform of the signal. Therefore, convo-
lution in the time / spatial domain is equivalent to multiplication in
the frequency domain. This practically means that a properly de-
signed kernel can be used to remove or amplify certain frequencies
of a given signal. In digital image processing (DSP), we can use
this property to blur or sharpen an image (low-pass vs. high-pass
filtering.

If an image is represented as a 2D discrete signal y[,], we can per-
form the discrete convolution in 2-dimensions using a discrete ker-
nel k[,] as:

(y ∗ k)[i, j] =
∑
n

∑
m

y[i− n, j −m]k[n,m].

As we always process an image with a finite resolution, the convo-
lution is actually a scalar product of the filter weights and all pixels
of the image within a window that is defined by the extent of the
filter and a center pixel. Figure 1 illustrates the convolution using
a small 3 × 3 kernel. The filter is defined as a matrix, where the

∗e-mail: jan.novak@kit.edu
†e-mail: gabor.liktor@kit.edu
‡e-mail: dachsbacher@kit.edu

central item weights the center pixel, and the other items define the
weights of the neighbor pixels. We can also say that the radius
of the 3 × 3 kernel is 1, since only the one-ring neighborhood is
considered during the convolution. We also have to define the con-
volution’s behavior at border of the image, where the kernel maps
to undefined values outside the image. Generally, the filtered val-
ues outside the image boundaries are either treated as zeros (this is
what we will do in this assignment) or clamped to the border pixels
of the image.

Per-Element mul.

Σ

1
8
0
1
0
0

2
7
3
2
0
0

0
3
5
1
0
1

7
4
3
7
0
7

0
1
0
1
0
2

3
0
1
0
1
0

5
1
3
7
0
1

0
0
0
5
3
2

-1
-2
-1

0
0
0

1
2
1

-7
-6
-2

0
0
0

4
6
7

2

Input image

Output image

Kernel

Figure 1: Convolution using a 3 × 3 kernel.

The design of the convolution filter requires a careful selection of
kernel weights to achieve the desired effect. In the following, we in-
troduce a few examples to demonstrate basic filtering kernels often
used in image processing.

1.2 Convolution Kernels

1.2.1 Sharpness Filter

The aim of this filter is to emphasize details of the input image
(Figure 2 B). The simplest sharpness filter is defined by a 3 × 3
kernel that can be described by any of the following matrices:

[
0 −1 0
−1 5 −1
0 −1 0

]
;

[
−1 −1 −1
−1 9 −1
−1 −1 −1

]
;

[
−k −k −k
−k 8k+1 −k
−k −k −k

]
.

Examining the matrices, we can see that for each source pixel, the
filter will take its neighborhood and compute their differences to the
original color of the pixel. The weight of the source pixel is always
greater than the absolute sum of all other weights, meaning that this
kernel keeps the original color and adds the additional difference to
it.

1.2.2 Edge Detection

In order to detect edges, we compute the gradient of the input im-
age along a given direction. Convolving the image with one of
the following matrices, the result will contain large values where

the pixel intensity changed relevantly. Unfortunately these simple
techniques are not really practical, as they greatly emphasize any
noise in the image and are only detecting edges from one direction
(Figure 2 C). Note that all matrices sum up to zero.[

−1/8 −1/8 −1/8
−1/8 1 −1/8
−1/8 −1/8 −1/8

]
;

[
−1 −1 −1
0 0 0
1 1 1

]
;

1.2.3 Embossing Filter

A very interesting example is the embossing filter which makes the
impression that the image is graved into stone and lit from a specific
direction (Figure 2 D). The difference to the previous filters is that
this filter is not symmetric. The filter is usually applied to grayscale
images. As the resulting values can be negative, we should add a
normalization offset that will shift the range of results into positive
values (otherwise some viewers will not display them).

[
2 −0 0
0 −1 0
0 0 −1

]
;

A B

C D

Figure 2: Even small image convolution kernels can be powerful
image processing operators. (A): The original image. (B): Sharp-
ening filter. (C): Edge detection filter. (D): Embossing filter.

1.3 Separable Kernels

Convolution is a useful, but computationally expensive operation.
For a given kernel matrix with width k we need k2wh multipli-
cations and additions to convolve an image of size w × h. Some
2D convolution kernels can be broken down to two 1D convolu-
tion kernels, one in the horizontal and one in the vertical direction.
Applying these two kernels sequentially to the same image yields
equivalent results, but with much lower complexity: only 2kwh
multiplications and additions. We call kernels with such property
separable. In practice, we want to determine if a given kernel is
separable and if so, find its two 1D equivalents for separable con-
volution.

A convolution kernel is separable, if the convolution matrix K has
the special property that it can be expressed as the outer product of
two vectors u and v. For a 3x3 matrix:

K = v ⊗ u =

[
v1
v2
v3

] [
u1 u2 u3

]
=[

v1u1 v1u2 v1u3

v2u1 v2u2 v2u3

v3u1 v3u2 v3u3

]
Having these vectors, we have already separated the convolution
kernel: u is the horizontal, v is the vertical 1D kernel. Unfortu-
nately, only a small fraction of the possible convolution kernels are
separable (it is not difficult to see that the above decomposition is
only possible, if the rank of the K matrix is 1), but there are still
several practical image filters that can be implemented this way.

1.3.1 Box Filter (Averaging)

The simplest separable filter takes the neighborhood of each pixel
in the filter area and computes their average (Figure 3).

Kbox =

[
1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

]
;u = v =

[
1/3 1/3 1/3

]

Figure 3: A 9 × 9 box-filter is applied to the image. As the filter is
not smooth, the blocks are still visible after a relatively wide kernel.

1.3.2 Gaussian Filter

Box filtering is simple, but does not result in a smoothly blurred
image. Gaussian blur is widely used in graphics software to reduce
image noise or remove details from the image before detecting rel-
evant edges. Gaussian blur is a low-pass filter, attenuating high
frequency components of the image. The 2D Gaussian function
(Figure 4) is the product of two 1D Gaussian functions:

G(x) =
1√
2πσ2

e
− x2

2σ2 ;G(x, y) =
1

2πσ2
e
− x

2+y2

2σ2

Figure 4: The 2D Gaussian function.

An example of a Gaussian-kernel with radius 2 is shown here:

KG5 =
1

273

1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

 ;

u = v =
[
.061 .242 .383 .242 .061

]
As illustrated in Figure 5, the Gaussian filter gives a much smoother
blurring result than the simple box filter.

Figure 5: The Gaussian filter give much smoother results compared
to the box filter. We have applied a 7 × 7 filter to the above image
two times. The result preserves important details of the original
image while the noise is effectively eliminated.

2 Implementation Considerations

Image convolution can be efficiently implemented on massively
parallel hardware, since the same operator gets executed indepen-
dently for each image pixel. However, there are several practical
problems that make the efficient implementation non-trivial. A
naı̈ve OpenCL implementation would simply execute a work-item
for each pixel, read all values inside the kernel area from the global
memory, and write the result of the convolution to the pixel. In this
case, each work-item would issue nm reads for an n × m-sized
kernel. Even worse, these reads would be mostly unaligned in the
global memory, resulting in several non-coalesced loads. This ap-
proach is very inefficient and we will not implement it in this as-
signment.

As the first improvement, we can divide the input image to small
tiles, each of which gets processed by a single work-group. These
work-groups can copy the pixels of the tile into the fast on-chip
local memory in a coalesced manner (the same as in the matrix
rotation task), then each work-item can quickly access neighbor-
ing pixels loaded by other work-items (Figure 6). This can already
mean magnitudes of speedup without any further optimizations, es-
pecially for large kernels.

For any reasonable kernel size, the blocks of pixels read by neigh-
boring work-groups will overlap, as the processing of each output
block will also depend on pixels outside its boundary. To correctly
compute the convolved result, the work-group will also need to load
a halo of the kernel radius. This will make the efficient OpenCL im-
plementation of the convolution more complicated as we will need
to take special care of keeping the memory accesses aligned.

2.1 Constant Memory

During the implementation of the convolution we will also make
use of the constant memory of the device for the first time. Con-
stant memory is a special part of the OpenCL memory model con-
taining data that are invariant during the kernel. The device can

Source Image in Global Memory

Filtered Image in Global Memory

Tile Processed by one
work-group

Halo pixels

Image Tile in the local memory

A single work-item

Figure 6: In the parallel implementation of the convolution in
OpenCL, each work-group must load a block of pixels to be filtered
into the fast local memory. As the kernel extends over the processed
tile at the border pixels, there is a halo of additional pixels of the
width of the kernel radius that is required in order to filter the tile.

cache these values during the execution so they can be accessed
with low latency. The size of the constant memory is limited due
to the cache size, the maximum amount available is 64KB on the
Fermi architecture. Note that the constant data is still allocated in
the global memory, but unlike the other data, they are cached using
the constant cache (2KB), which helps to hide most of the global
memory latency.

In our implementation we will store the kernel weights in the con-
stant memory.

2.2 Memory Alignment

We will store the processed image as a linear array in the global
memory, but work-groups will operate on it in the two-dimensional
domain. To keep data accesses coalesced, the base address of each
warp (group of 32 threads) must match to 64 or 128-byte aligned
segments. Now, if the width of the 2D image is not multiple of
the coalesced segment size, the memory access pattern of 2D work-
groups will be misaligned, as every row of the image gets shifted to
various base addresses on the segment.

We can eliminate this problem by making sure that the width of
the 2D array is always the multiple of the coalesced segment size.
If this is not the case, we add a small padding at the end of each
line, restoring the proper alignment. When mapping a 2D index to
the linear array, we will use this new pitch value to address a given
pixel (x,y).

3 Task 1: Non-Separable Convolution

As the first task, you will need to implement a convolution with an
arbitrary 3 × 3 kernel on the device. In the general case, the con-
volution kernel is not separable, therefore each pixel must consider
its one-ring neighborhood at once.

3.1 Introducing the code

The reference solution on the CPU is already implemented in
the CConvolution3x3 class which you can find in the startup
project. This class takes an input pfm (portable float map) im-
age, applies the given convolution kernel, and saves the result in the

same format. During the assignment you do not have to change the
code of this class. You only need to implement the OpenCL kernel
that performs the same operation on the device. Before implement-
ing, we recommend to take a closer look at the class to understand
its behavior. Applying an embossing filter to the input image would
look like this:

size_t TileSize [2] = {32 , 16} ;
f l o a t ConvKernel [3] [3] = {
{2 , 0 , 0} ,
{0 , −1, 0} ,
{0 , 0 , −1},

} ;
RunAssigment (CConvolution3x3 (” i n p u t . pfm ” , TileSize ,
ConvKernel , t r u e , 0 . 5f)) ;

The first parameter of the constructor is the input image, the second
parameter is the size of the tile in pixels, which will be processed
by a single work-group. The third parameter defines the 9 weights
of the convolution kernel, while the last one is a constant offset that
will be added to each pixel after the convolution. The boolean pa-
rameter simply defines if we want to convert the image to grayscale
before processing or not. You can also try out the other 3x3 kernels
introduced in Section 1.2.

3.2 Kernel Implementation

We store the image in separate arrays for each color channel, and
perform the convolution individually for each channel. Therefore,
for an RGB floating point image, the filtering algorithm will be ex-
ecuted three times. This lowers the requirements on the local mem-
ory, as we only need to load data of one channel. More importantly,
the accesses of a single warp to one row of pixels will match a 128-
byte aligned segment (32 floats). We also do not need to implement
different kernels for filtering colored and grayscale images.

The OpenCL implementation will divide the image into tiles, which
are small enough to fit into the local memory. The algorithm then
process each tile using a single work-group to reduce loads from
the global memory. The kernel should consist of two main parts
separated by a memory barrier. In the first part the work-items of
the work-group should cooperatively load the relevant image region
for the convolution of the tile. Each work-item will load one pixel in
the active area of the convolution, but as the convolution of the tile
also depends on pixels lying in the halo area, a subset of the work-
items will load the halo pixels as well. Do not forget to allocate
enough of shared memory to contain the halo region!

We assume that the width of the work-group matches the coalesced
segment size of the device, so the base addresses of the work-items
are always aligned. The header of the kernel is already defined in
Convolution3x3.cl:

__kernel __attribute__ ((reqd_work_group_size (TILE_X ,
TILE_Y , 1)))

vo id Convolution (
__global f l o a t ∗ d_Dst ,
__global c o n s t f l o a t ∗ d_Src ,
__constant f l o a t ∗ c_Kernel ,
uint Width ,
uint Height ,
uint Pitch
)

{}

The input data is in a buffer referenced by d Src, the convolved
image should be stored in d Dst. As you can see, c Kernel
is defined as a pointer to the constant memory, so all kernel

weights will be cached in the on-chip constant cache during ex-
ecution. c Kernel contains 11 float values, c Kernel[0] -
c Kernel[8] are the kernel weights, c Kernel[9] is the nor-
malization factor (with which you have to multiply the convolution
result) and c Kernel[10] is the offset that must be added to the
normalized result.

It is important to mention that both d Dst and d Src are linearly
aligned in the global memory as described in Sect. 2.2, therefore
you should use the last attribute, Pitch to calculate row offsets on
the memory:

/ / Access p i x e l [x , y]
/ / Use P i t c h i n s t e a d o f Width !
/ / Width i s on ly f o r boundary c he c ks
f l o a t pix = d_Src [y ∗ Pitch + x] ;

Finally, we can define strict conditions for the allowed work-group
size. This feature of the OpenCL compiler can be useful if we need
to know the dimensions of the work-group at the compilation time,
and want to avoid run-time errors using the kernel with incorrect ex-
ecution configuration. The reqd work group size() attribute
will prevent the kernel from running if the size of the work-group
is not TILE X × TILE Y. For example, we can statically allocate
local memory for the work-group in the kernel code (note that in all
previous assignements we allocated the local memory dynamically,
using an argument to the kernel):

/ / l o c a l memory f o r t h e c o n v o l u t i o n + t h e h a l o a r e a
__local f l o a t tile [TILE_Y + 2] [TILE_X + 2] ;

The reference solution is implemented in the
ConvolutionChannelCPU() method of the
CConvolution3x3 class. To pass the evaluation test,
your implementation should exactly match the reference result.
The reference test also computes a difference image which you
can examine to clearly see regions of the GPU output that contain
incorrect values. Since some halo pixels will map outside the
image, you should not forget to manually set them to zero.

3.3 Evaluation

The total amount of points reserved for this task is 5:

• Tile and halo pixels are loaded into the local memory without
bank-conflicts (use the profiler). (3 points).

• The 3x3 convolution is performed for each pixel in the tile and
the result is stored in the output image (2 points).

4 Task 2: Separable Convolution

Figure 7: If the kernel radius is large, the non-separable imple-
mentation must load a large halo region of pixels to the local mem-
ory. Besides its computational efficiency, a separable kernel also
improves the memory bandwidth requirements of the algorithm.

Apart from being less computation-intensive, a separable filter also
allows us to employ further optimizations to improve the perfor-
mance. Instead of executing a single kernel for the entire convolu-
tion, we can separate the convolution kernel into a horizontal and
a vertical pass. Note that without any further steps, the memory
bandwidth can already improve significantly. If the kernel radius
is large, the non-separable implementation must load a large halo
region for each processed tile. Having a 16 × 16-sized block and
a kernel with radius 16, this would mean that each pixel must be
loaded into the local memory of different work-groups 9 times (see
Figure 7). The separable implementation of the same dimensions
would only need to load the halo along one direction, thus the re-
quired bandwidth already drops by 33% (a pixel is loaded 3 times
in each directions).

4.1 Horizontal Filter

We can further improve the bandwidth efficiency of the horizontal
kernel by increasing the width of the image region processed by
the same work-group. By omitting halo values in the vertical direc-
tion, we have enough local memory available for each work-group
to handle more pixels per work-item. In this case we, are more lim-
ited by the work-group size (maximum 1024 work-items on Fermi)
than the local memory. The computational complexity of the kernel
remains the same, of course, but now there will be several pixels
that are only loaded once during the horizontal convolution pass.

Groupsize.X

Groupsize.Y

Kernel
radius

Aligned radius

Processed pixels
Halo pixels
Redundant pixels

Loaded by the same work-item

Local Memory

Global Memory Input image, processed in tiles

Figure 8: The horizontal filter, as processed by a single work-
group. Since we are more limited by the number of work-items than
the local memory, a single work-item can load and process multi-
ple pixels in the horizontal direction. To maintain coalescing, the
loaded halo pixels are extended to match a 128-bit aligned segment.

By proper tiling of the image to work-group areas, it is simple to
ensure that each work-group has a properly aligned base address
for coalescing. The halo regions, however, make the algorithm a
lot more complicated. In this task we allow the user to define an
arbitrary kernel radius. The question is then how to load pixels
in the halo area. If the work-items with get local index(0)
== 0 would load all the leftmost halo pixels as well, the memory
accesses would be unaligned and we would lose the coalescing. The
best solution to this problem is illustrated in Figure 8. By sacrificing
a small amount of local memory, we make sure that the memory
accesses of the work-items are always properly aligned: the entire
work-group loads both the left and right halo pixels inside the work-
group width. These redundant loads will not have any performance
drawback as the load of the entire halo region will be coalesced into
a single transaction, and it even makes the code simpler: as each

work-item loads the same number of pixels to the local memory, no
branching is necessary to check if the work-item is inside the halo
or not.

4.2 Vertical Filter

The vertical filter uses the same approach, but this time the work-
item indices are increasing perpendicularly to the filter direction
rather than along it. The goal is now to maximize the height of the
tile being filtered by a single work-group, so we should keep the
tile as narrow as possible. To match coalescing requirements, it is
the best to set the width to 32 (or 16 on pre-Fermi cards), so that
each row of the tile can be loaded in a single transaction. Akin to
the horizontal kernel, each thread loads multiple elements to the lo-
cal memory, reducing the number of overlapped pixels of different
tiles. Figure 9 depicts the layout of the kernel memory accesses in
the vertical filtering pass.

Input image, processed in tiles

Global Memory Local Memory

Groupsize.x
(32)

Groupsize.y

Kernel radiusProcessed pixels
Halo pixels
Initialized to zero

Figure 9: In the vertical pass, the width of the tile processed by a
work-group should be 32, so that the Fermi architecture can load
a row of float values in a single transaction. The concept of imple-
mentation is the same as in the horizontal pass, but note that the
redundant pixels in the local memory are initialized to zeros this
time, as loading additional pixels would mean redundant memory
transactions as well.

4.3 Implementation

The CConvolutionSeparable class implements the reference
solution to the separable convolution on the CPU. We recommend
you to closely examine the CPU solution before proceeding with
the implementation of the OpenCL kernel. The structure of this
class is very similar to CConvolution3x3, but now two ker-
nels have to be executed for the convolution, and the filtering func-
tion is given by two 1D arrays. The following code snippet uses
a CConvolutionSeparable object to perform a box filter on
the image with radius 4:

size_t HGroupSize [2] = {64 , 8} ;
size_t VGroupSize [2] = {32 , 16} ;
f l o a t ConvKernel [9] ;
f o r (i n t i = 0 ; i < 9 ; i++)

ConvKernel [i] = 1 . 0f / 9 . 0f ;

RunAssigment (CConvolutionSeparable (” i n p u t . bmp” ,
HGroupSize , VGroupSize ,

3 , 3 , 4 , ConvKernel , ConvKernel)) ;

This time we should define the work-group dimensions for the hor-
izontal and vertical passes separately, as the optimal configuration
can be different in each case. The fourth attribute is the number of
pixels a single thread computes in the horizontal pass (3), the fifth
one is the same for the vertical pass, the next value (4) is the kernel
radius.

Your task is to implement the body of the ConvHorizontal
and ConvVertical kernel functions in the
ConvolutionSeparable.cl file. Note that during the
building of your OpenCL program, several macro definitions
will be provided for the compiler, so it can optimize the code by
unrolling loops and you can statically allocate the local memory,
similarly to the previous task. You can find the description of these
macros before the kernel headers. For example, in the horizontal
kernel, each work-item processes H RESULT STEPS pixels. The
static local memory for the workgroup can be allocated like this:

__local f l o a t tile [H_GROUPSIZE_Y] [(H_RESULT_STEPS + 2)
∗ H_GROUPSIZE_X] ;

If H GROUPSIZE X is the multiple of 32, there will be no bank
conflicts during loading data to the local memory. Each work item
has H RESULT STEPS + 2 slots in the local memory, the two
additionals for loading one halo pixel on the left and right side, re-
spectively. For simplicity, we assume now, that the kernel radius is
not greater than the dimension of the work-group along the convo-
lution direction, so it is enough if each work-item loads exactly one
halo pixel.

Some general advice for the implementation:

• Do not forget to use barriers before processing data from the
local memory.

• Use the macro definitions whenever possible. If a value is
known at compilation time, the compiler can optimize the
code much better. For example innermost the loop performing
the 1D convolution can be automatically unrolled.

• Do not forget to check image boundaries, and load zeros to
the local memory if the referenced pixel is outside the image
boundaries. Use the image pitch as the number of pixels allo-
cated for a single row in the memory.

• As the convolution consists of two separate passes this time,
it is not easy to see which kernel executed incorrectly, if the
CPU reference test failed. In this case we recommend you
to temporarily comment out one convolution pass in the CPU
code, so you can have an intermediate evaluation for a single
convolution kernel.The difference images between the refer-
ence and the OpenCL solution can also help revealing prob-
lems.

4.4 Evaluation

The total amount of points reserved for this task is 7:

• Implementation of the horizontal convolution kernel. (3
points).

• Implementation of the vertical convolution kernel (3 points).

• Performance experiments: change the number of pix-
els processed by a single work-group (for example:
H RESULT STEPS) to see how does it influence the band-
width requirements and the performance of your application.
Summarize your experiences on a chart (1 point).

5 Task 3: Bilateral Filter

In some parts of the input signal, complete convolution with the
kernel function is not desired. For instance, consider a noisy im-
age from a camera. If we use a Gaussian blur filter, we may get
rid of most of the noise, but we will immediately loose the sharp-
ness, since the convolution also blurs the edges. We can overcome
this by employing a bilateral (edge-preserving) filtering, which, in
addition to the input and filter functions, considers an additional
weighting function. For every point in the domain of the input sig-
nal, the weighting function affects the application of the kernel. In
our case, we define the weighting function to be 1 for all surface
neighbor points that have similar normal and spatial position as the
center point, and 0 for all other points. This will help us to avoid
blurring over edges, as the value of the weighting function will be
zero in such cases. We will call the weighting function a disconti-
nuity function.

As the discontinuity function cancels out some parts of the kernel,
the product of the kernel and discontinuity functions will not in-
tegrate to one anymore and the resulting image will be darker. In
order to prevent the loss of energy, we have to reweight the result
of the convolution by the sum of all actual weights (products of the
kernel and discontinuity function).

5.1 Discontinuity Function

The discontinuity function can be constructed directly from the in-
put image, e.g. by using an edge detection filter. In this assignment
we will take a different approach: we will compute the disconti-
nuity function from additional geometric information, i.e. the sur-
face normal and projection depth. This information can be easily
obtained when the input is a synthetic image computed by some
rendering algorithm, for instance path tracing. Along with the in-
put image we obtain also a buffer with normals and a depth buffer
(shown in Figure 11).

Figure 10: Depth (left) and normal (right) buffers representing the
additional geometric information.

We will use the additional geometric information to create a dis-
continuity buffer that will be later used to determine, weather there
is a discontinuity between two neighboring pixels. Each pixel in
the buffer will contain a binary flag. This flag will be determined
by looking at the four closest horizontal and vertical neighbors and
comparing their normal and depth to the normal and depth of the
pixel. Starting with the flag equal to 0, we add 1 if there is a discon-
tinuity on the left, 2 if a discontinuity is on the right, and 4 and 8 if
there are discontinuities on top and at the bottom of the pixel. An
example of computing the discontinuity flags is shown in Figure 11.
The entire discontinuity buffer is shown in Figure 12.

You should implement the computation of the discontinu-
ity buffer within the DiscontinuityHorizontal and
DiscontinuityVertical kernels. Both of these kernels are
given an array of float4: xyz components represent the nor-
mal and w component represents the depth. Load these values to
the local memory (as in the separable convolution in Task 2) and
then compute the correct flag for each pixel by looking at the four

1 0 2
4

8
4 6
9

1
8

2 10
0
6

0

0

Figure 11: Left: discontinuity in each of the four directions is rep-
resented by one bit in the flag. Right: example of the flag for a few
pixels, the background color represents direction of pixel’s normal.

Figure 12: Left: original noisy image. Right: discontinuity buffer
with black and white pixels representing pixels with no or some
discontinuity in the neighborhood, respectively.

neighborhood pixels. Use the IsNormalDiscontinuity()
and IsDepthDiscontinuity() functions to compare the nor-
mals and depth values. You can also write a single kernel that
will detect the discontinuities, but you will have to change the
.cpp file. If you do not use the local memory, and fetch the values
directly from the global memory, you can still hand the implemen-
tation in, but you will loose two points.

5.2 Bilateral Filtering

Figure 13: Resulting image filtered with an edge-preserving Gaus-
sian blur.

As long as we have the discontinuity buffer, we can perform the
bilateral filtering. Extend the implementation of the separable con-
volution by adding a discontinuity test. You should always start
from the center pixel. Then proceed in one of the four horizontal or
vertical directions towards the extent of the kernel and check if the
next pixel in the direction is behind an edge. If no, add the weighted
value, otherwise, exit from the loop. You also have to accumulate
the actual weights that were used and reweight the final sum, oth-
erwise the picture will be darker around the edges. This is because
the values in the convolution kernel are computed with the assump-
tion that all of them will be used, which is not the case if we omit
some of them due to the discontinuities.

Add your code into ConvHorizontal and ConvVertical
functions. In contrast to corresponding functions from Task 2, these

kernels obtain a buffer with the discontinuity flags. The resulting
image is shown in Figure 13.

5.3 Evaluation

The total amount of points reserved for this task is 8:

• Correct computation of the discontinuity buffer using local
memory (4 points), or without local memory (2 points).

• Bilateral filtering with the discontinuity buffer (4 points).

The images with the correct results (discontinuities.pfm
and GPUResultBilateral.pfm) are also provided with the
source code, so you can check if your implementation is correct.

	Image Convolution
	Introduction
	Convolution Kernels
	Sharpness Filter
	Edge Detection
	Embossing Filter

	Separable Kernels
	Box Filter (Averaging)
	Gaussian Filter

	Implementation Considerations
	Constant Memory
	Memory Alignment

	Task 1: Non-Separable Convolution
	Introducing the code
	Kernel Implementation
	Evaluation

	Task 2: Separable Convolution
	Horizontal Filter
	Vertical Filter
	Implementation
	Evaluation

	Task 3: Bilateral Filter
	Discontinuity Function
	Bilateral Filtering
	Evaluation

