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Abstract: In this paper we present a method for 
representing complex façades. For this purpose we developed a 
hierarchical decomposition for the façade. The steps of the 
decomposition are represented as nodes in a typed graph where 
the leaves are the atomic façade elements. Every node includes 
necessary attributes for its façade structure. The edges in the 
graph depict adjacent façade elements providing spatial 
information. With this approach complex architectural 
structures can be defined easily. A geometry engine traverses 
the graph in order to generate the detailed façade geometry but 
can stop at any given depth to produce exactly fitting 
geometry. 

Key words: virtual architecture, procedural modeling, 
computer graphics. 

1- Introduction 

The manual modeling of detailed façade structures with tools 
like Maya [AM1] or 3D Studio Max [A3D1] is a very time-
consuming and tedious task. Another problem is that models 
once created can not be changed easily. 

This paper contributes to a solution that avoids these problems. 
We developed a method to represent a detailed façade with the 
following features. The façade is represented in a symbolic 
way with necessary geometrical information. Changes in the 
façade can be done easily by this symbolic representation. 
Finally, a geometry engine creates the entire façade 
automatically. The generated geometry fits together exactly so 
that adjacent structures do not overlap. This also simplifies 
texture generation because the surface occupied by a texture is 
exactly given with its geometry. Unwanted effects such as 
overlapping textures and geometry are excluded by definition. 

With such a representation the modeling task takes place on 
an abstract level. This relieves the designer of the burden of 
difficult modeling tasks and gives him a high level of 
control. The façade representation and the geometry engine 
are part of a bigger system we are currently developing (see 
Figure 2). 

The goal is to allow the designer to provide only a coarse 
outline of the building and some parameters about the type 
and style of the building and a kind of database is queried to 
produce the details for the façade (see Figure 1). With this 
information the graph is built and the geometry engine 
generates the detailed façade geometry. 

 

Figure 1: Modeling process for a) the user and b) the system. 
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Figure 2: System overview. 

 

2- Related work 

There are a lot of different research areas which contribute to 
the task of automated building and façade generation which are 
mainly subsumed in the task of procedural modeling of cities, 
buildings, façades, and architectural structures. In the 
following, we concentrate on the representation of façades. 

For procedural modeling there are basically two common 
techniques. The first technique is rewriting which operates on 
strings. Especially Chomsky's work on formal grammars 
caused a huge interest in rewriting systems. A condensed 
introduction is given in [S1]. The second technique applies L-
systems. The biologist Aristid Lindenmayer proposed this 
mathematical formalism–which also uses rewriting–in 1968 as 
a foundation for an axiomatic theory of biological development 
[PL1]. The basic idea is to use a set of rewriting rules or 
productions to create complex objects by successively 
replacing parts of a simple object. In Chomsky grammars 
productions are applied sequentially, whereas in L-systems 
they are applied in parallel, replacing simultaneously all letters 
in a given word. 

There are several research papers concerning the procedural 
modeling of whole cities using grammars and L-system like 
[PM1, MW1], [GP1, GP2], and [A1]. Parish and Müller [PM1] 
create the geometry for the buildings with a parametric 
stochastic L-system. Their buildings are generated by 
manipulating an arbitrary ground plan. When producing the 
building they use several modules for the L-system, e. g. 
transformation modules, extrusion modules, branching and 
termination modules, etc. Textures are created for the façades. 
Therefore they designed a tool for the semi-automatic 
generation of façades which they call layered grids. In [GP1] 
and [GP2] Greuter et al. focus on a real-time generation of 
procedural cities. They construct their two-dimensional floor 
plans from level to level by adding and merging a randomly 
selected regular polygon or rectangle. For texturing the 

buildings they use a fixed number of predefined texture 
patterns to give the buildings an appropriate look. 

The authors of the papers [BB1, BJ1, LD1, HF1] present 
specialized methods for the description and generation of 
architectural structures. Birch et al. [BB1, BJ1] present 
techniques for the interactive modeling of buildings and 
architectural structures. They focus on the reduction of the 
number of parameters to a manageable size and to generate 
details procedurally. In order to have different windows a 
basic rectangular window can be successively subdivided 
into smaller windows. On these windows various window 
styles can be applied. They also have the possibility to 
generate bay windows. Legakis et al. [LD1] present a method 
for cellular texturing of architectural models. Upon the 
underlying geometry they perform texturing operations 
considering the interdependencies between cells for vertices 
(corners), edges and faces. Havemann et al. [HF1] use the 
combination of polygonal mesh modeling and subdivision 
surfaces, which they call Combined BRep, for modeling 
architectural structures like ornaments and window frames. 
They only need a coarse model of the structure and a view 
dependent refinement is done at runtime. Wonka et al. 
[WW1] introduce split grammars for the generation of 
buildings. They represent the façade as a non-terminal shape 
which can be further split into smaller non-terminal shapes 
leading in the last step of splitting to terminal shapes like 
windows, wall elements, etc.  

Müller et al. [MW1] present a combination of the work from 
Parish et al. [PM1] and Wonka et al. [WW1] with 
astonishing results. But they do not provide any information 
for texturing the buildings. For architectural elements they 
use predefined models. A disadvantage of those three works 
is that the building description is not parameterized. After a 
building is created it can not be modified easy. They also 
recognized that spatial information upon adjacent elements is 
crucial. For resolving spatial queries they subdivide the 
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building with an octree where intersection tests are computed. 
With the method presented in this paper spatial queries can be 
answered by hierarchical description of the building. 
Intersection tests are not necessary. 

The last paper mentioned leads us to the important objective of 
adequate geometry representation. Mäntyä [M1] introduces 
different boundary models. Faces, edges and vertices are 
represented in a tree like structure not only describing the 
geometry model but also connection information between 
faces, edges and vertices. 

3- Floor plan outline 

Our main goal is to have arbitrary floor plan outlines for every 
level in a building. For this purpose we follow the aspect of a 
vector oriented approach. Additionally we have to take two 
aspects into account. First, we discovered that it is necessary to 
have basic architectural information, e. g. the location of 
projections, balconies, etc., on an early stage of modeling. The 
second is that we need spatial information of adjacent 
architectural structures both on a single level (intra level) and 
between two adjacent levels (inter level). 

In the next two subsections we describe the methods which 
fulfill our demands. 

3.1 - Single level 

To obtain arbitrary floor plan outlines with necessary 
information about basic architectural structures, we compose 
convex 2D polygons to a floor plan outline. We refer to a 
convex polygon as a floor plan module or fpm. Each fpm 
represents an architectural structure in the façade with 
necessary information, e. g. type, material, basic geometric 
information, etc. To receive a single floor plan outline several 
fpms are combined. The basic method is given in [FB1]. In this 
method floor plan modules are connected via their edges. But 
floor plans like the Petronas Towers (see the outline in 
Figure 3) ground level were not possible. We extended this 
method to cope with this problem. Now two connected fpms 
can share a line (or a convex polygon) between two edges 
which build a concave form. This line can again have 
connections to other fpms. In Figure 3 we have a big 
rectangular fpm (fpm1) where four triangular shaped fpms 
(fpm2, …, fpm5, depicted with dashed lines) are connected, 
each on one edge. The vertices where the relevant edges build 
a concave form are marked with a circle. The eight thick lines 
between the four triangles and the big rectangle form the new 
connection lines. Each of the eight lines has an arc fpm 
connected. Now a Petronas Tower like floor plan can be 
generated. 

 

Figure 3: fpms representing a Petronas Towers like floor plan. 

3.2 - Multiple levels 

When extending a single floor plan to buildings with 
multiple levels, we start upon the fpms on the first level. The 
fpms are extended in a way that spatial information between 
different levels can be generated easily. For this purpose we 
support the following options for each fpm in the level to be 
extended. It can be: 

• omitted, so no such fpm will be on the next level, 

• fully extended to the next level or 

• subdivided as shown in Figure 4, each convex 
combination of the subdivisions can be extended to 
the next level. 

In [FB1] the last method (mentioned as “free”) for extending 
a fpm to a new level caused intersection operations. This led 
to the problem that spatial information was hard to compute. 
Therefore we replaced it with subdividing the fpm. The new 
method works as follows. The fpm in Figure 4 consists of the 
closed polygon (p1, p2, p3, p4, p5). The edges e1, e5, e4, and e3 
are subdivided, generating the vertices q1, q2, q3, q4. The fpm 
is then subdivided by the dotted edges (q1, q2) and (q3, q4) 
thus producing the following convex polygons: (p1, q3, q5, 
q2), (q3, p5, q1, q5), (q5, q1, p4, q4), and (q2, q5, q4, p3, p2). 
Any convex combination can be used for next level fpms. It 
is also possible to have multiple but disjoint convex 
combinations for next level fpms. 
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Figure 4: Subdivision of a floor plan module. 

During the extension process, necessary connections will be 
retained. To generate structures like oriels or balconies, etc. the 
newly created fpms receive connections to fpms representing 
these structures, like the oriel on the left side on the second 
level shown in Figure 13. With our representation of the floor 
plan outlines the seams of adjacent structures in a single level 
and between two consecutive levels are emphasized clearly. 
This information is crucial if the geometry of interdependent 
structures has to be adapted at their seams. Also depicted in 
Figure 5 are the seams of adjacent structures. The lines in 
shades of red represent different types of floor connections to 
the previous level’s ceiling. Ceiling connections are coded in 
shades of green. Connections between elements on the same 
level are blue colored. 

 

Figure 5: Different connection types between adjacent structures. 

4- Façade description 

Now that we have a representation for the coarse outline of a 
building, the next step is to generate the façade details. In the 
next sections we describe how we successively refine the 
coarse outline. From step to step we add more details to the 
façade. 

4.1 - Corners and walls 

The basic walls and corners are built from the coarse outline of 
every level's floor plan. Each vertex of the outline represents a 
corner whereas each edge is taken as a basic wall. Basic walls 
are further subdivided into walls and optionally wall spacers. 

As shown in Figure 13 the front wall (a basic wall) of the top 
level is subdivided into five walls and four spacers. Wall 
spacers and corners can be refined to stacks of arbitrary 
blocks. In Figure 13 the quoins consist of single blocks as 
well as the elements between the walls. 

4.2 - Cornices 

Additionally cornices can be applied to corners, walls, and 
wall spacers. The contour of a cornice is defined via a Logo-
like [MA1] description language. We support two simple 
commands angle and arc. Angle draws a straight line 
(initially starting at the origin) of a given length and direction 
whereas arc draws an arc with a given radius and sweep 
angle. Figure 13 shows several different cornice types on 
every level of the building. Level one and two have cornices 
at the bottom and at the top. Level three has only a cornice at 
the top. The example in Figure 6 describes the cornice on the 
third floor of the façade in Figure 13. The profile of the 
cornice is shown in Figure 7. 

Modifications 
{ 
  angle, rel,  90, 0.3; 
  angle, rel, -90, 10.0; 
  angle, rel,  90, 0.6; 
  angle, rel, -90, 11.0; 
  angle, rel,  90, 0.6; 
  angle, rel, -90, 0.6; 
  angle, rel,  90, 0.6; 
  angle, rel, -90, 2.0; 
  angle, rel,  90, 2.0; 
  arc, rel, 0, 4.0, -90; 
  angle, rel,  90, 5.0; 
  angle, rel, -90, 5.0; 
  angle, rel,  90, 0.6; 
  angle, rel, -90, 0.6; 
  angle, rel,  45, 7.0; 
  angle, rel, -45, 0.6; 
  angle, rel,  90, 0.6; 
  angle, rel, -90, 2.0; 
  angle, rel, -84, 22.0; 
} 

Figure 6: Example cornice description. 

 

Figure 7: Example cornice profile. 

4.3 - Doors and windows 

Doors and windows are defined for walls only. First a 
rectangular hole is defined relative to a given wall. In the 
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next step the four edges of the hole can be refined. Each edge 
can be replaced with a polygon defined by the description 
language we use for the cornices. The dotted line in Figure 8 
shows a refined edge. Additional parameters for offsets to the 
left dl, right dr, and top dt can be applied. In Figure 8 the 
original edge (fl, fr) is refined to the dotted line between the 
edge (l, r). 

 

Figure 8: Refinement for a top edge of a window or a door. 

The inner part of the hole is now filled with a frame for each 
refined edge. Figure 9 shows different frame types that can be 
used: single and double cornice, bricks, and simple. The ledges 
(the bottom edges) of all four window frames are simple types. 
The top edges of the two frames on the left side have a special 
cornice refinement. It is a combination of two different 
cornices. Both top frames are additionally refined with bricks 
and the bottom right frame has a single cornice refinement. 

The frames for the window panes are kept very simple. They 
run along the inner edges determined by the above defined 
frames, have a central cross, and are of type cornice. All 
windows in Figure 9 and Figure 13 have such window pane 
frames. 

 

Figure 9: Refined window borders with different styles. 

5- Roof description 

Most algorithms for roof generation work on arbitrary floor 
plan outlines. Felkel et al. [FO1] present a robust algorithm 
for automatic roof generation. The floor plan polygon is 
shrunk to a kind of skeleton which is used to create the 
gables. Laycock et al. [LD2] and Müller et al. [MW1] 
present another method for the automatic generation of roof 
models. They build the roofs according to the building 
footprint. Laycock et al. partition a building footprint into 
rectangular pieces where main parts may also overlap. Then 
each piece is given a roof type and adjacent roofs are 
connected appropriately. The limitation is the need for 
rectangularity and that the roofs all take place at the same 
level. Müller et al. merge main building parts where each 
part has its own roof type. Then they also generate 
appropriate roofs. A major problem of both approaches is the 
intersection of the building pieces forming the roof. 

In our case we use the individual floor plan modules to 
control the appearance of the roof. The appearance of the 
entire roof is determined by the single floor plan modules. 
Every top level fpm has its own roof type information. 
Actually the three roof types flat, pent, and gable roof are 
possible. Figure 10 shows the basic procedure for pent and 
gable roofs. The fpm represented by (p1, p2, p3, p4, p5) is 
subdivided by the line (q1, q2). In this example q2 equals p2. 
For the pent roof an additional angle α at point q2 or p2 
describes the roof inclination. For the gable roof the line 
represents the gable at a given height h. Additionally the line 
can be subdivided by the points r1=(q1- q2) a and r2=(q1- q2) 
b to receive a hipped roof with height h1 and h2. 

 

Figure 10: Start for pent and gable roof. 

When the entire roof is generated, the roof information of 
adjacent fpms are combined into a single roof. The step from 
single fpm roofs to a combined roof is shown in Figure 11. 
With our method no complicated intersections have to be 
computed and we are not limited to roofs on a single level. 
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Figure 11: Step from roof parts to the entire roof.  

6- Geometry engine 

In the previous sections, we explained our method of 
representing building outline and façade elements, including 
fpms, walls, corners, windows, etc. In this section we put all 
information together and introduce our hierarchical description 
of the façade in a typed graph. We developed a tool, the 
geometry engine, which takes the data and produces the 
detailed geometry. 

6.1 - Hierarchy 

An entire hierarchy combining floor plan, roof generation and 
façade representation for a particular building façade is 
depicted in Figure 12. This depicts the relationships between 
adjacent façade elements. The nodes also include essential 
geometric information. 

 

Figure 12: Hierarchy for a particular building façade. 

6.2 - Hierarchy traversal 

Now we generate the geometry upon the information given 
by the hierarchy. For that reason we start at the root of our 
hierarchy (which represents the entire building) and traverse 
it down to its leaves. While traversing the graph we gather 
information about the geometry in every step which is 
equivalent to a step by step refinement of the geometry. 

6.3 - Depth order relation 

A major aspect in our concept is that adjacent structures do 
not overlap, so they have to be adapted. Our depth order 
relation arises directly from the graph. Deeper steps in the 
hierarchy have a higher priority and hence they have the 
permission to modify the geometry of previous steps, e. g. 
the door or window holes modify the walls. 

6.4 - Same level order relation 

The nodes in the hierarchy at the same depth also have to be 
taken into account. For instance walls, corners and spacers 
are all at the same level. Here the corners and spacers have a 
higher priority and the wall geometry is modified to fit the 
corners' or spacers' geometry. 

Finally we build the roofs but they are treated in a special 
manner because they do not fit in the relations described 
before. If in the same level they are adapted according to the 
order given by the connection tree of the fpms, e. g. if one 
roof is adjacent to another roof then the roof with lower 
priority is adapted to fit the adjacent roof. If one roof is 
adjacent to other structures such as walls, corners, spacers, 
doors or windows then these structures are adapted to fit the 
roof. For example in Figure 13 the projection on the left side 
is only present in the first two levels. A roof on top of this 
projection will interfere with the wall on the third level and 
therefore the wall has to be adapted. 

The above mentioned hierarchical information gathering 
process can be interrupted at any depth and the geometry will 
be created that far. This allows us to produce a more or less 
detailed geometry for a façade which can be used for a level 
of detail visualization, which is useful for real-time 
applications. 

At the moment we can produce the geometry in either MEL 
(Maya Embedded Language) or RenderMan format. This 
allows the user to import the model into Maya or render it 
with a RenderMan compliant renderer. 

7- Results 

For the typed graph and the geometry engine we 
implemented a prototype in Python. At the moment the 
coarse building outline has to be provided as Python code. 
Very simple methods take the role of the style library. They 
subdivide the coarse building and produce the detailed façade 
description. The prototype has been tested on an AMD 
Athlon XP 2000+ with 1 GB memory. 



Virtual Concept 2006 Representation of complex façades using typed graphs 

VC_InCo2006_P93 -7- Copyright Virtual Concept 

The examples in Figure 13 and Figure 14 were generated with 
our prototype and rendered in Maya. The first example consists 
of 81983 triangles and 3439 individual objects. The creation 
time for the example was 26 seconds. The second example 
consists of 556736 triangles and 7971 individual objects. The 
creation time was 107 seconds. 

8- Conclusion and future work 

In this paper we proposed a representation of a detailed façade 
description in a hierarchical typed graph. We presented the 
versatility of this representation regarding the ability to change 
the façade appearance quickly and to automatically generate 
exact fitting geometry. The method is applied in a framework 
for rapid modeling of building façades which is still under 
development. 

A limitation of the presented method is that organic looking 
structures can not be described. Also the floor plan description 
is limited to polygons. This could be solved with splines but 
would increase the time for development. 

Different façade styles, its proportions, etc. will be represented 
as rules in a graph structure. With a graphical user interface the 
designer draws the coarse building outline and the graph is 
queried to produce the detailed façade geometry. To have a 
more realistic appearance for the walls, we are developing a 
texture generator to create adapted brickworks. Additionally, 
new roof types and balconies will be added. 
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Figure 13: Example façade. 

 

Figure 14: Example façade of a large building. 


