
Original Article Proceedings of Virtual Concept 2006
Playa Del Carmen, Mexico, November 26th – December 1st, 2006

VC_InCo2006_P93 -1- Copyright of Virtual Concept

Representation of complex façades using typed graphs

Dieter Finkenzeller, Alfred Schmitt

Universität Karlsruhe
Institut für Betriebs- und Dialogsysteme

Am Fasanengarten 5
76131 Karlsruhe

Tel: +497216087505
Fax: +497216088330

E-mail : {dfinken, schmitt}@ira.uka.de

Abstract: In this paper we present a method for
representing complex façades. For this purpose we developed a
hierarchical decomposition for the façade. The steps of the
decomposition are represented as nodes in a typed graph where
the leaves are the atomic façade elements. Every node includes
necessary attributes for its façade structure. The edges in the
graph depict adjacent façade elements providing spatial
information. With this approach complex architectural
structures can be defined easily. A geometry engine traverses
the graph in order to generate the detailed façade geometry but
can stop at any given depth to produce exactly fitting
geometry.

Key words: virtual architecture, procedural modeling,
computer graphics.

1- Introduction

The manual modeling of detailed façade structures with tools
like Maya [AM1] or 3D Studio Max [A3D1] is a very time-
consuming and tedious task. Another problem is that models
once created can not be changed easily.

This paper contributes to a solution that avoids these problems.
We developed a method to represent a detailed façade with the
following features. The façade is represented in a symbolic
way with necessary geometrical information. Changes in the
façade can be done easily by this symbolic representation.
Finally, a geometry engine creates the entire façade
automatically. The generated geometry fits together exactly so
that adjacent structures do not overlap. This also simplifies
texture generation because the surface occupied by a texture is
exactly given with its geometry. Unwanted effects such as
overlapping textures and geometry are excluded by definition.

With such a representation the modeling task takes place on
an abstract level. This relieves the designer of the burden of
difficult modeling tasks and gives him a high level of
control. The façade representation and the geometry engine
are part of a bigger system we are currently developing (see
Figure 2).

The goal is to allow the designer to provide only a coarse
outline of the building and some parameters about the type
and style of the building and a kind of database is queried to
produce the details for the façade (see Figure 1). With this
information the graph is built and the geometry engine
generates the detailed façade geometry.

Figure 1: Modeling process for a) the user and b) the system.

Virtual Concept 2006 Representation of complex façades using typed graphs

VC_InCo2006_P93 -2- Copyright Virtual Concept

Figure 2: System overview.

2- Related work

There are a lot of different research areas which contribute to
the task of automated building and façade generation which are
mainly subsumed in the task of procedural modeling of cities,
buildings, façades, and architectural structures. In the
following, we concentrate on the representation of façades.

For procedural modeling there are basically two common
techniques. The first technique is rewriting which operates on
strings. Especially Chomsky's work on formal grammars
caused a huge interest in rewriting systems. A condensed
introduction is given in [S1]. The second technique applies L-
systems. The biologist Aristid Lindenmayer proposed this
mathematical formalism–which also uses rewriting–in 1968 as
a foundation for an axiomatic theory of biological development
[PL1]. The basic idea is to use a set of rewriting rules or
productions to create complex objects by successively
replacing parts of a simple object. In Chomsky grammars
productions are applied sequentially, whereas in L-systems
they are applied in parallel, replacing simultaneously all letters
in a given word.

There are several research papers concerning the procedural
modeling of whole cities using grammars and L-system like
[PM1, MW1], [GP1, GP2], and [A1]. Parish and Müller [PM1]
create the geometry for the buildings with a parametric
stochastic L-system. Their buildings are generated by
manipulating an arbitrary ground plan. When producing the
building they use several modules for the L-system, e. g.
transformation modules, extrusion modules, branching and
termination modules, etc. Textures are created for the façades.
Therefore they designed a tool for the semi-automatic
generation of façades which they call layered grids. In [GP1]
and [GP2] Greuter et al. focus on a real-time generation of
procedural cities. They construct their two-dimensional floor
plans from level to level by adding and merging a randomly
selected regular polygon or rectangle. For texturing the

buildings they use a fixed number of predefined texture
patterns to give the buildings an appropriate look.

The authors of the papers [BB1, BJ1, LD1, HF1] present
specialized methods for the description and generation of
architectural structures. Birch et al. [BB1, BJ1] present
techniques for the interactive modeling of buildings and
architectural structures. They focus on the reduction of the
number of parameters to a manageable size and to generate
details procedurally. In order to have different windows a
basic rectangular window can be successively subdivided
into smaller windows. On these windows various window
styles can be applied. They also have the possibility to
generate bay windows. Legakis et al. [LD1] present a method
for cellular texturing of architectural models. Upon the
underlying geometry they perform texturing operations
considering the interdependencies between cells for vertices
(corners), edges and faces. Havemann et al. [HF1] use the
combination of polygonal mesh modeling and subdivision
surfaces, which they call Combined BRep, for modeling
architectural structures like ornaments and window frames.
They only need a coarse model of the structure and a view
dependent refinement is done at runtime. Wonka et al.
[WW1] introduce split grammars for the generation of
buildings. They represent the façade as a non-terminal shape
which can be further split into smaller non-terminal shapes
leading in the last step of splitting to terminal shapes like
windows, wall elements, etc.

Müller et al. [MW1] present a combination of the work from
Parish et al. [PM1] and Wonka et al. [WW1] with
astonishing results. But they do not provide any information
for texturing the buildings. For architectural elements they
use predefined models. A disadvantage of those three works
is that the building description is not parameterized. After a
building is created it can not be modified easy. They also
recognized that spatial information upon adjacent elements is
crucial. For resolving spatial queries they subdivide the

Virtual Concept 2006 Representation of complex façades using typed graphs

VC_InCo2006_P93 -3- Copyright Virtual Concept

building with an octree where intersection tests are computed.
With the method presented in this paper spatial queries can be
answered by hierarchical description of the building.
Intersection tests are not necessary.

The last paper mentioned leads us to the important objective of
adequate geometry representation. Mäntyä [M1] introduces
different boundary models. Faces, edges and vertices are
represented in a tree like structure not only describing the
geometry model but also connection information between
faces, edges and vertices.

3- Floor plan outline

Our main goal is to have arbitrary floor plan outlines for every
level in a building. For this purpose we follow the aspect of a
vector oriented approach. Additionally we have to take two
aspects into account. First, we discovered that it is necessary to
have basic architectural information, e. g. the location of
projections, balconies, etc., on an early stage of modeling. The
second is that we need spatial information of adjacent
architectural structures both on a single level (intra level) and
between two adjacent levels (inter level).

In the next two subsections we describe the methods which
fulfill our demands.

3.1 - Single level

To obtain arbitrary floor plan outlines with necessary
information about basic architectural structures, we compose
convex 2D polygons to a floor plan outline. We refer to a
convex polygon as a floor plan module or fpm. Each fpm
represents an architectural structure in the façade with
necessary information, e. g. type, material, basic geometric
information, etc. To receive a single floor plan outline several
fpms are combined. The basic method is given in [FB1]. In this
method floor plan modules are connected via their edges. But
floor plans like the Petronas Towers (see the outline in
Figure 3) ground level were not possible. We extended this
method to cope with this problem. Now two connected fpms
can share a line (or a convex polygon) between two edges
which build a concave form. This line can again have
connections to other fpms. In Figure 3 we have a big
rectangular fpm (fpm1) where four triangular shaped fpms
(fpm2, …, fpm5, depicted with dashed lines) are connected,
each on one edge. The vertices where the relevant edges build
a concave form are marked with a circle. The eight thick lines
between the four triangles and the big rectangle form the new
connection lines. Each of the eight lines has an arc fpm
connected. Now a Petronas Tower like floor plan can be
generated.

Figure 3: fpms representing a Petronas Towers like floor plan.

3.2 - Multiple levels

When extending a single floor plan to buildings with
multiple levels, we start upon the fpms on the first level. The
fpms are extended in a way that spatial information between
different levels can be generated easily. For this purpose we
support the following options for each fpm in the level to be
extended. It can be:

• omitted, so no such fpm will be on the next level,

• fully extended to the next level or

• subdivided as shown in Figure 4, each convex
combination of the subdivisions can be extended to
the next level.

In [FB1] the last method (mentioned as “free”) for extending
a fpm to a new level caused intersection operations. This led
to the problem that spatial information was hard to compute.
Therefore we replaced it with subdividing the fpm. The new
method works as follows. The fpm in Figure 4 consists of the
closed polygon (p1, p2, p3, p4, p5). The edges e1, e5, e4, and e3
are subdivided, generating the vertices q1, q2, q3, q4. The fpm
is then subdivided by the dotted edges (q1, q2) and (q3, q4)
thus producing the following convex polygons: (p1, q3, q5,
q2), (q3, p5, q1, q5), (q5, q1, p4, q4), and (q2, q5, q4, p3, p2).
Any convex combination can be used for next level fpms. It
is also possible to have multiple but disjoint convex
combinations for next level fpms.

Virtual Concept 2006 Representation of complex façades using typed graphs

VC_InCo2006_P93 -4- Copyright Virtual Concept

Figure 4: Subdivision of a floor plan module.

During the extension process, necessary connections will be
retained. To generate structures like oriels or balconies, etc. the
newly created fpms receive connections to fpms representing
these structures, like the oriel on the left side on the second
level shown in Figure 13. With our representation of the floor
plan outlines the seams of adjacent structures in a single level
and between two consecutive levels are emphasized clearly.
This information is crucial if the geometry of interdependent
structures has to be adapted at their seams. Also depicted in
Figure 5 are the seams of adjacent structures. The lines in
shades of red represent different types of floor connections to
the previous level’s ceiling. Ceiling connections are coded in
shades of green. Connections between elements on the same
level are blue colored.

Figure 5: Different connection types between adjacent structures.

4- Façade description

Now that we have a representation for the coarse outline of a
building, the next step is to generate the façade details. In the
next sections we describe how we successively refine the
coarse outline. From step to step we add more details to the
façade.

4.1 - Corners and walls

The basic walls and corners are built from the coarse outline of
every level's floor plan. Each vertex of the outline represents a
corner whereas each edge is taken as a basic wall. Basic walls
are further subdivided into walls and optionally wall spacers.

As shown in Figure 13 the front wall (a basic wall) of the top
level is subdivided into five walls and four spacers. Wall
spacers and corners can be refined to stacks of arbitrary
blocks. In Figure 13 the quoins consist of single blocks as
well as the elements between the walls.

4.2 - Cornices

Additionally cornices can be applied to corners, walls, and
wall spacers. The contour of a cornice is defined via a Logo-
like [MA1] description language. We support two simple
commands angle and arc. Angle draws a straight line
(initially starting at the origin) of a given length and direction
whereas arc draws an arc with a given radius and sweep
angle. Figure 13 shows several different cornice types on
every level of the building. Level one and two have cornices
at the bottom and at the top. Level three has only a cornice at
the top. The example in Figure 6 describes the cornice on the
third floor of the façade in Figure 13. The profile of the
cornice is shown in Figure 7.

Modifications
{
 angle, rel, 90, 0.3;
 angle, rel, -90, 10.0;
 angle, rel, 90, 0.6;
 angle, rel, -90, 11.0;
 angle, rel, 90, 0.6;
 angle, rel, -90, 0.6;
 angle, rel, 90, 0.6;
 angle, rel, -90, 2.0;
 angle, rel, 90, 2.0;
 arc, rel, 0, 4.0, -90;
 angle, rel, 90, 5.0;
 angle, rel, -90, 5.0;
 angle, rel, 90, 0.6;
 angle, rel, -90, 0.6;
 angle, rel, 45, 7.0;
 angle, rel, -45, 0.6;
 angle, rel, 90, 0.6;
 angle, rel, -90, 2.0;
 angle, rel, -84, 22.0;
}

Figure 6: Example cornice description.

Figure 7: Example cornice profile.

4.3 - Doors and windows

Doors and windows are defined for walls only. First a
rectangular hole is defined relative to a given wall. In the

Virtual Concept 2006 Representation of complex façades using typed graphs

VC_InCo2006_P93 -5- Copyright Virtual Concept

next step the four edges of the hole can be refined. Each edge
can be replaced with a polygon defined by the description
language we use for the cornices. The dotted line in Figure 8
shows a refined edge. Additional parameters for offsets to the
left dl, right dr, and top dt can be applied. In Figure 8 the
original edge (fl, fr) is refined to the dotted line between the
edge (l, r).

Figure 8: Refinement for a top edge of a window or a door.

The inner part of the hole is now filled with a frame for each
refined edge. Figure 9 shows different frame types that can be
used: single and double cornice, bricks, and simple. The ledges
(the bottom edges) of all four window frames are simple types.
The top edges of the two frames on the left side have a special
cornice refinement. It is a combination of two different
cornices. Both top frames are additionally refined with bricks
and the bottom right frame has a single cornice refinement.

The frames for the window panes are kept very simple. They
run along the inner edges determined by the above defined
frames, have a central cross, and are of type cornice. All
windows in Figure 9 and Figure 13 have such window pane
frames.

Figure 9: Refined window borders with different styles.

5- Roof description

Most algorithms for roof generation work on arbitrary floor
plan outlines. Felkel et al. [FO1] present a robust algorithm
for automatic roof generation. The floor plan polygon is
shrunk to a kind of skeleton which is used to create the
gables. Laycock et al. [LD2] and Müller et al. [MW1]
present another method for the automatic generation of roof
models. They build the roofs according to the building
footprint. Laycock et al. partition a building footprint into
rectangular pieces where main parts may also overlap. Then
each piece is given a roof type and adjacent roofs are
connected appropriately. The limitation is the need for
rectangularity and that the roofs all take place at the same
level. Müller et al. merge main building parts where each
part has its own roof type. Then they also generate
appropriate roofs. A major problem of both approaches is the
intersection of the building pieces forming the roof.

In our case we use the individual floor plan modules to
control the appearance of the roof. The appearance of the
entire roof is determined by the single floor plan modules.
Every top level fpm has its own roof type information.
Actually the three roof types flat, pent, and gable roof are
possible. Figure 10 shows the basic procedure for pent and
gable roofs. The fpm represented by (p1, p2, p3, p4, p5) is
subdivided by the line (q1, q2). In this example q2 equals p2.
For the pent roof an additional angle α at point q2 or p2
describes the roof inclination. For the gable roof the line
represents the gable at a given height h. Additionally the line
can be subdivided by the points r1=(q1- q2) a and r2=(q1- q2)
b to receive a hipped roof with height h1 and h2.

Figure 10: Start for pent and gable roof.

When the entire roof is generated, the roof information of
adjacent fpms are combined into a single roof. The step from
single fpm roofs to a combined roof is shown in Figure 11.
With our method no complicated intersections have to be
computed and we are not limited to roofs on a single level.

Virtual Concept 2006 Representation of complex façades using typed graphs

VC_InCo2006_P93 -6- Copyright Virtual Concept

Figure 11: Step from roof parts to the entire roof.

6- Geometry engine

In the previous sections, we explained our method of
representing building outline and façade elements, including
fpms, walls, corners, windows, etc. In this section we put all
information together and introduce our hierarchical description
of the façade in a typed graph. We developed a tool, the
geometry engine, which takes the data and produces the
detailed geometry.

6.1 - Hierarchy

An entire hierarchy combining floor plan, roof generation and
façade representation for a particular building façade is
depicted in Figure 12. This depicts the relationships between
adjacent façade elements. The nodes also include essential
geometric information.

Figure 12: Hierarchy for a particular building façade.

6.2 - Hierarchy traversal

Now we generate the geometry upon the information given
by the hierarchy. For that reason we start at the root of our
hierarchy (which represents the entire building) and traverse
it down to its leaves. While traversing the graph we gather
information about the geometry in every step which is
equivalent to a step by step refinement of the geometry.

6.3 - Depth order relation

A major aspect in our concept is that adjacent structures do
not overlap, so they have to be adapted. Our depth order
relation arises directly from the graph. Deeper steps in the
hierarchy have a higher priority and hence they have the
permission to modify the geometry of previous steps, e. g.
the door or window holes modify the walls.

6.4 - Same level order relation

The nodes in the hierarchy at the same depth also have to be
taken into account. For instance walls, corners and spacers
are all at the same level. Here the corners and spacers have a
higher priority and the wall geometry is modified to fit the
corners' or spacers' geometry.

Finally we build the roofs but they are treated in a special
manner because they do not fit in the relations described
before. If in the same level they are adapted according to the
order given by the connection tree of the fpms, e. g. if one
roof is adjacent to another roof then the roof with lower
priority is adapted to fit the adjacent roof. If one roof is
adjacent to other structures such as walls, corners, spacers,
doors or windows then these structures are adapted to fit the
roof. For example in Figure 13 the projection on the left side
is only present in the first two levels. A roof on top of this
projection will interfere with the wall on the third level and
therefore the wall has to be adapted.

The above mentioned hierarchical information gathering
process can be interrupted at any depth and the geometry will
be created that far. This allows us to produce a more or less
detailed geometry for a façade which can be used for a level
of detail visualization, which is useful for real-time
applications.

At the moment we can produce the geometry in either MEL
(Maya Embedded Language) or RenderMan format. This
allows the user to import the model into Maya or render it
with a RenderMan compliant renderer.

7- Results

For the typed graph and the geometry engine we
implemented a prototype in Python. At the moment the
coarse building outline has to be provided as Python code.
Very simple methods take the role of the style library. They
subdivide the coarse building and produce the detailed façade
description. The prototype has been tested on an AMD
Athlon XP 2000+ with 1 GB memory.

Virtual Concept 2006 Representation of complex façades using typed graphs

VC_InCo2006_P93 -7- Copyright Virtual Concept

The examples in Figure 13 and Figure 14 were generated with
our prototype and rendered in Maya. The first example consists
of 81983 triangles and 3439 individual objects. The creation
time for the example was 26 seconds. The second example
consists of 556736 triangles and 7971 individual objects. The
creation time was 107 seconds.

8- Conclusion and future work

In this paper we proposed a representation of a detailed façade
description in a hierarchical typed graph. We presented the
versatility of this representation regarding the ability to change
the façade appearance quickly and to automatically generate
exact fitting geometry. The method is applied in a framework
for rapid modeling of building façades which is still under
development.

A limitation of the presented method is that organic looking
structures can not be described. Also the floor plan description
is limited to polygons. This could be solved with splines but
would increase the time for development.

Different façade styles, its proportions, etc. will be represented
as rules in a graph structure. With a graphical user interface the
designer draws the coarse building outline and the graph is
queried to produce the detailed façade geometry. To have a
more realistic appearance for the walls, we are developing a
texture generator to create adapted brickworks. Additionally,
new roof types and balconies will be added.

7- References

[A1] D. Arnold. Economic reconstructions of populated
environments - progress with the charismatic project, 2000.

[A3D1] Autodesk. 3D Studio Max, 2006.
http://www.autodesk.com/3dsmax.

[AM1] Autodesk. Maya, 2006.
http://www.autodesk.com/maya.

[BB1] P. J. Birch, S. P. Browne, V. J. Jennings, A. M. Day,
and D. B. Arnold. Rapid procedural-modelling of architectural
structures. In Proc. of the 2001 conference on Virtual reality,
archeology, and cultural heritage, pages 187-196. ACM Press,
2001.

[BJ1] P. Birch, V. Jennings, A. M. Day, and D. B. Arnold.
Procedural modelling of vernacular housing for virtual heritage
environments, 2001.

[FB1] Dieter Finkenzeller, Jan Bender, and Alfred Schmitt.
Feature-based decomposition of façades. Proc. Virtual Concept
2005.

[FO1] Petr Felkel and Stepan Obdrzalek. Straight skeleton
implementation. In Laszlo Szirmay Kalos, editor, 14th Spring
Conference on Computer Graphics (SCCG’98), pages 210-218,
1998.

[GP1] Stefan Greuter, Jeremy Parker, Nigel Stewart, and
Geoff Leach. Undiscovered worlds - towards a framework
for real-time procedural world generation. In Proc. of the
Fifth Intern. Digital Arts and Culture Conference, 2003.

[GP2] Stefan Greuter, Jeremy Parker, Nigel Stewart, and
Geoff Leach. Real-time procedural generation of ‘pseudo
infinite’ cities. In GRAPHITE ’03: Proc. of the 1st
international conference on Computer graphics and
interactive techniques in Australasia and South East Asia,
pages 87-ff, New York, NY, USA, 2003. ACM Press.

[HF1] Sven Havemann and Dieter Fellner. A versatile 3d
model representation for cultural reconstruction. In Proc. of
the 2001 conference on Virtual reality, archeology, and
cultural heritage, pages 205-212. ACM Press, 2001.

[LD1] Justin Legakis, Julie Dorsey, and Steven Gortler.
Feature-based cellular texturing for architectural models. In
Proc. of the 28th annual conference on Computer graphics
and interactive techniques, pages 309-316. ACM Press,
2001.

[LD2] R. G. Laycock and A. M. Day. Automatically
Generating Roof Models from Building Footprints. The 11th
International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision 2003.

[M1] Martti Mäntyä. An Introduction to Solid Modeling.
Computer Science Press, Maryland, 1988.

[MA1] Anne MacDougall, Tony Adams, and Pauline
Adams. Learning Logo on the Apple II. Simon & Schuster,
1984.

[MW1] Pascal Müller, Peter Wonka, Simon Haegler,
Andreas Ulmer, and Luc Van Gool. Procedural modeling of
buildings. ACM Trans. Graph., 25(3):614-623, 2006.

[PL1] Przemyslaw Prusinkiewicz and Aristid Lindenmayer.
The algorithmic beauty of plants. Springer-Verlag New
York, Inc., New York, USA, 1996.

[PM1] Yoav I. H. Parish and Pascal Müller. Procedural
modeling of cities. In Proc. of the 28th annual conference on
Computer graphics and interactive techniques, pages 301-
308. ACM Press, 2001.

[S1] Uwe Schöning. Theoretische Informatik kurz gefasst. BI
Wissenschaftsverlag, 1992.

[WW1] Peter Wonka, Michael Wimmer, François Sillion,
and William Ribarsky. Instant architecture. ACM Trans.
Graph., 22(3):669-677, 2003.

Virtual Concept 2006 Representation of complex façades using typed graphs

VC_InCo2006_P93 -8- Copyright Virtual Concept

Figure 13: Example façade.

Figure 14: Example façade of a large building.

