
Simplification of Reconstructed Meshes in Real Time

F. Pizarro
Universität Karlsruhe
fpizarro@ira.uka.de
http://i33www.ira.uka.de/

S. Preuß
Universität Karlsruhe
stpreuss@ira.uka.de
http://i31www.ira.uka.de/

A. Schmitt
Universität Karlsruhe
aschmitt@ira.uka.de
http://i31www.ira.uka.de/

Abstract
Immersing a scanned replication of a person
into a virtual reality environment is a multi-
faceted challenge. One key issue of this task
is to improve the result and performance of the
reconstruction algorithm that is used to create
the 3D model out of pictures taken from the
person. In this paper, we present a method to
reduce the effort of a 3D model reconstruction
process by polygonal simplification in real time
(in less than 0.06 seconds). Besides being a
relative fast algorithm, in every step the method
holds a consistent mesh, so it can be aborted if
calculation time runs short. Furthermore, we
describe a data structure called AI-Tree (Ad-
justable Index Tree), that allows to speeding up
the process of rebuilding a mesh data structure
out of lists of vertices, edges and polygons
that appear in file formats of 3D models and
network communication. AI-Trees offer a fast
way to find indices out of linked lists, and a
scaleable trade-off between performance and
memory consumption.

Keywords: Polygonal Simplification, Vir-
tual Environments, Three-Dimensional Shape
Recovery, Range Data Analysis, Data Struc-
tures, Data Transmission.

1 Introduction

The main goal of this work is to immerse real
people into a virtual reality environment. Con-
trary to other works (e.g., Fautz [1]), the num-
ber and the flexibility of the camera positions
are reduced. For the development and testing of

Figure 1: Illustration of our environment and re-
construction process.

our algorithms we use the setup illustrated in the
top of Figure 1. Eight cameras are distributed
around the workspace in front a the projection
wall to provide pictures of the user, that are used
to generate a 3D model of himself.

The algorithm has to achieve visual realtime
(currently at 15 fps, due to the synchronization
mode of the used ieee1394-cameras). So the al-
gorithm has to be optimized in account to speed,

further usability of the result and visual quality.
In this paper we describe the optimization of a
polygonal mesh resulting of the volume inter-
section algorithm. Polygonal simplification re-
duces the effort in the following cutting steps of
the volume intersection algorithm and the effort
of texturing the final visual hull (see Figure 1
c,i).

2 Related Work

[2] introduced the concept of a visual hull.
Plainly speaking the visual hull of an object
against a definite viewing space is the maximum
body that casts the same silhouettes. Depending
of the viewing space, it might be impossible to
reconstruct certain concave features that lie in-
side the convex hull of the object. One statement
of this paper is that, despite that some concave
features might be skipped, the visual hull defines
the best possible result for silhouette based re-
construction algorithms.

[3] propose a realtime approach to reconstruct
objects (and people) which has similarities to
our own. His precise connectivity method also
uses the silhouettes acquired from the object’s
images and casts rays through the silhouette
boundaries. Using epipolar geometry, the sil-
houettes taken from different camera positions
provide information to separate these rays into
intervals which belong to the object and inter-
vals that do not. These intervals are assembled
into the desired visual hull of the object.

[1] described in his PhD thesis an automatic
reconstruction process of real objects. Pictures
of an object are taken by a camera on a robot
arm, which provides a great flexibility in the
choice of the viewing points. He developped
a new variant of the principle of volume inter-
section, using boundary representations and thus
avoiding disadvantages of volumetric represen-
tations. Additionally the visual impression of
the resulting geometry is improved with refined
textures out of the taken images of the object.
The high performance of this algorithm at that
time leads to this work, in which it is tried to
establish it in a real time environment.

2.1 The Reconstruction Process

The reconstruction process as illustrated in the
bottom half of Figure 1 starts with the extrac-
tion of the object from the background to ob-
tain the silhouette and an usable texture (Figure
1 a,b). The description of the adaptive back-
ground model to extract the object from the
background, while ignoring changing lighting
conditions, shadows and the changing projec-
tion wall is described in [4].

In the first step to generate the visual hull, the
viewing cones are build with the knowledge of
the camera positions, defining the tip, and the
silhouettes, which define the base (Figure 1 d,e).
Starting with a cube representing the workspace
(Figure 1 c), each viewing cone is successively
cut from the previous result to further approxi-
mate the visual hull of the object (Figure 1 f,g).
This reconstruction process is the main objective
for the discussed polygonal simplification algo-
rithm of this paper.

Finally the texture coordinates are calculated
by projecting the images from the camera po-
sitions onto the reconstructed object. A set of
blended images are used for view dependend
texturing (Figure 1 h,i). This includes the de-
tection of self shadowed parts, that are not to be
seen from the cameras and should not be tex-
tured with their pictures (e.g. the inside of the
legs from the view of a side camera).

3 Motivation

The meshes from the reconstruction pro-
cess bear some uneccesary characteristics like
stretched faces with low curvature to their neigh-
bouring faces and highly faceted regions, that do
not contribute to the overall visual appearance.

The time comsumption of subsequent re-
construction stages (e.g. smoothing, texturing
with detection of self shadowing, network com-
muncation) after the visual hull reconstruction,
depends mostly on the number of facets of the
reconstructed geometry, that are reduced by a
predecessing polygonal simplification stage de-
scribed in the Section 4. For a dynamical trade
off of processing time between polygonal sim-
plification and the following process stages, the
polygonal simplification process must be in-
teruptable, that means it has to always provide

a consistent geometry.
The geometry is represented in the usual cross

referenced data structure of vertex, edge and
face objects, that provide a fast access for nav-
igating the geometry. Additionally the three
kinds of objects are also stored in lists for se-
quential tasks, like rendering or file handling.
Whereas filling the lists out of network or file
data is an easy and fast task, the reconstruction
of the geometric data structure is quite time con-
suming, as even a single indexed access on lists
has a worst case cost of O(n). The presented AI-
Tree in Section 5 helps to quicken the indexed
access on the lists for rebuilding the geometric
data structure.

4 Polygonal Simplification

Our polygonal simplification has a main restric-
tion according to the main process. If we con-
sider at least 15 fps, then the simplification pro-
cess must be executed or stopped in less than
0.06 seconds. As a second condition, our sim-
plification should be based on the data structure
used in the main reconstruction process (bidi-
rectional lists with cross references between ver-
tices, edges and polygons). Our goal is to reduce
the mesh as much as possible in this stretch of
time without visual degradation of the mesh.

4.1 Previous Works

Many good algorithms have been developed for
the simplifications of meshes. Although it is
not possible for us to cover all the existing ap-
proaches, we have try to cover a generic group
with similar characteristics.

[5, 6] and more recently [7], use vertex-
removal as the simplification method to grad-
ually simplify meshes. This method removes
vertices and its associated geometric informa-
tion (polygons and edges), generating holes in
the surface that are replaced with new triangu-
lations. The holes around the removed vertices
need to be replaced by concave triangulations to
avoid self-intersection of the polygons. Also, it
is necessary to find a plane that fits (as much as
possible) all the adjacent vertices belonging to
the created hole, to evaluate the volume cost of
this operation using the vertex removed as refer-

ence.
[8, 9, 10] use vertex-clustering to simplify

the mesh by incremental steps instead of small
local simplifications (vertex-removal and edge-
collapse). This approach is faster than [11],
but with several changes in the features of the
meshes that will produce undesirable effects for
our purpose (the obtained meshes in our recon-
struction process are already poor in detail qual-
ity). Furthermore, this process cannot be inter-
rupted before its natural execution to obtain ac-
ceptable results. [10] has improved the visual
performance of this technique, but increasing
the execution time by a factor of 7.5.

[12, 13, 14, 15, 11] use edge-collapse as the
local method. This method introduced by [12]
has been used in many applications for auto-
matic simplification of meshes. Undoubtedly
this method has demonstrated to be very effec-
tive in mesh simplification by priority queue.
Briefly each edge in the mesh have a collapse
priority, defined by a cost funtion [14, 15]. Al-
though [14] is a very fast algorithm of simplifi-
cation with high quality approximation, only to
compute the Q matrix of each vertex plus the
derive matrix Q′ of each edge (wich basically
represent the collapse cost) and create the pri-
ority queue, would drain our simplification time
very fast. [12, 13] use a strategy too slow to be
considered in our real time problem.

[11] has improved the performance of [14]
about 2.5 times with a visual quality slightly in-
ferior. This improvment is achieved avoiding the
priority queue by Multiple-Choice-Techniques
(MCT) and at same time using half-edge col-
lapse instead of minimizing the geometric er-
ror of each collapse operation. Nevertheless
they compute about 16 Q and 8 Q′ matrix in
the evaluation cost process of the 8 edges ran-
domly selected during the MTC process. We as-
sume that some pointer array data structure is
used togheter with OpenMesh (as data structure
for geometric representation) to efficiently ac-
cess the edges randomly selected.

4.2 Fast Polygonal Simplification

Our approach uses edge-collapse as the local
simplification method. Although the error met-
ric proposed by [14] is improved in time by [11],
we have developed a new error metric that con-

sumes less time and we obtain visually accept-
able results. We also avoid the use of priority
queue as [11], but we do not use a random se-
lection of candidates to collapse using MTC, in-
stead of that, we only process the vertices list
verifying if each vertex can be collapse with a
counterpart according to its curvature. Compar-
ing our simplification process without the factor
time our approach does not produce high qual-
ity simplification as [12, 13, 14, 15, 11], but
we obtain visually acceptable results and with-
out topological degradation of the meshes as
[8, 9, 10].

We will use the notation v, e and t to repre-
sent the geometric elements; vertices, edges and
triangles respectively. We have adopted the ope-
rators de and bc defined by [15] to describe our
approach.

We define our simplification method as the
execution of successive simplification phases.
The simplification phase is defined as the ve-
rification of each valid vertex v in the mesh to
be collapsed with another valid vertex, where a
valid vertex is any vertex that was not created by
a successful edge-collapse in the current simpli-
fication phase (at the beginning of every phase
each vertex is considered valid). We introduce
this definition of our simplification method as
formal definition, to explain our approach, how-
ever it is not our intention to present it as auto-
matic polygonal simplification for meshes. Our
goal is restricted only to be applied in our recon-
structed process of meshes in real time.

4.2.1 Collapse Metric

Our approach runs in a real time environment
and is based on mesh curvatures giving us the
advantage to execute the simplification even
during the process of reconstruction based on
images, needing minimal geometric informa-
tion around two vertices. Given a vertex v we
choose its collapse counterpart v′ by minimiz-
ing Ω(v, v′). Ω(v, v′) is defined as:

Ω(v, v′) = |ω(v) − ω(v′)| (1)

where:
ω(v) =

∑
∀e∈dve

θ(e) (2)

The operator θ(e) calculates the dihedral angle
between the triangles in dee and v′ ∈ {bdvec −

v}. Once v′ is choosen, we replace the vertices
v and v′ by vn in dbdve ∩ dv′ece and ddbdve ∩
dv′ecee. vn is defined as:

vn = v + (v′ − v)
(

1
2

+
ω(v′) − ω(v)

2 · max[ω(v′), ω(v)]

)
If we meet the condition ω(v) + ω(v′) = 0 we
choose the midpoint between v and v′ for vn.

4.2.2 Error Metric

The use of the previous described curvature me-
tric to collapsed edges is not enough to guaran-
tee the preservation of the original features. We
must consider other restrictions to guarantee the
feature preservation and also avoid the self in-
tersection in the new triangulation generated by
edge-collapse operations. These rectricions are
defined as:

ω(v) > γ (3)

Ω(v, v′) > µ (4)

ω(vn) > max[ω(v), ω(v′)] · λ (5)

The edge-collapse operation is rejected if (3) or
(4) is met and the operation is undone if (5) is
met after the same one.

Restriction (3) garantees the preservation of
strong change of curvature in the mesh. The val-
ues of γ can be defined reasonably for most of
the meshes as 0 < γ ≤ π (to get this range of
values for γ, consider as example a corner ver-
tex v of a perfect cube mesh in (3) and any other
vertex in the same mesh).

Restriction (4) prevents to collapse vertices
with angular differences bigger than µ degrees.
As a result it allows to generate an approximate
curvature of the original mesh. The value of µ is
directly related with the final approximation of
the mesh curvature that we want to obtain.

Finally, restriction (5) prevents a triangle in-
tersection being produced by collapse opera-
tions. If triangle intersection happens, then
ω(vn) produces a considerable imbalance of (5)
due to the abrupt change of curvature between
the intersected triangles. We have defined λ =
1.25 empirically after many tests, to assure tri-
angulations free of intersections.

Of course if we consider meshes with hun-
dred of thousands or millions of polygons, to

Figure 2: Structure of the AI-Tree.

be simplified about 0.06 seconds, then these re-
strictions are unnecessary, due to the high den-
sity of vertices. However with meshes between
6,000 and 8,000 polygons obtained using our re-
construction process, the limitless application of
edge-collapse operations without any error met-
ric produce severe visual changes only in 0.06
seconds.

4.2.3 Additional Considerations

The reconstruction process in real time does not
create meshes with holes, only closed manifold
meshes, but we developed our polygonal simpli-
fication by many meshes of public domain. Of
course, to reduce our tests only to closed meshes
would deprive us of interesting meshes to test.
The problem resides in determining (2) for ver-
tices that belong to the boundary of a mesh, be-
cause the edges in that area have only one asso-
ciated triangle and make it impossible to calcu-
late θ(e). To solve this problem we define ω′(v),
Ω′(v, v′) and θ′(e1, e2), These functions are de-
fined as:

Ω′(v, v′) = |ω′(v) − ω′(v′)| (6)

where:

ω′(v) = θ′(e1, e2),∀e1, e2 ∈ dve (7)

The operator θ′ calculates the angle between the
directional edges e1 and e2. Although we do not
need this metric in our real time simplification, it
allows us to examine the behavior of our simpli-
fication approach in many meshes. We consider

Figure 3: AI-Tree Node

also a similar restriction such as (3) for (7) by
ω′(v) > γ′ and (4) for (6) by Ω′(v, v′) > µ′

(notice that a similar restriction such as (5) is
not necessary with (7) because the edge-collapse
operation with boundary vertices does not gen-
erate self intersections).

5 AI-Tree

The reconstruction of the data structure configu-
ration by meshes stored in files or received by
network is an inefficient process because lists
(used in our reconstruction process) has a worst
case of O(n) in the search operation. As a con-
sequence to create the cross references between
vertices, polygons and edges becomes a process
quite inefficient for meshes such as the Stanford
Bunny.

In order to solve this problem we designed a
data structure called AI-Tree (Adjustable Index
Tree) that allows us to rebuild the original mesh
structure quickly and efficiently (less than 1 sec-
ond for meshes with 100,000 polygons). The AI-
Tree is attached to another base data structure
to improve the execution costs to O(log2(n))
for search operations (see Figure 2). Additional
minimal memory is used to improve the search
and it is possible to obtain a trade-off between
performance and memory consumption reduc-
ing the number of levels in the AI-Tree.

5.1 Implementation

We will consider the base data structure attached
to the AI-Tree as the last level.

1. The AI-Tree has a total of L levels for n el-
ements. L is defined as:

2 ≤ L ≤ dlog4(n)e (8)

2. Each level Li will have Ti elements. Ti is

Number of operations in the Search Operation AI-Tree
(worst case)

levels v/s n 5,000 35,000 100,000 250,000 500,000
2 72 188 317 500 708
3 27 51 71 96 120
4 19 28 36 47 56
5 15 24 25 33 35
6 17 18 24 24 30
7 13 20 21 21 27
8 16 23 24 24
9 17 18 26
10 19
Number of operations in the search operation AVL-Tree

(worst case)
AVL-Tree 13 16 17 18 19

Table 1: Execution cost for the AI-Tree and AVL-
Tree.

defined as:

Ti
0≤i≤L

=

dTi+1e

4 if L = dlog4(n)e
and i 6= L

n
i
L else

(9)

3. The execution cost in the worst case for the
search operation is defined by C as:

C = L +
L∑

i=1

ci (10)

where:

ci =

{
0 if Ti − 2 · Ti−1 ≤ 0⌈

Ti
2·Ti−1

− 1
⌉

else
(11)

We will use the expression node(l, t) to refer
to a specific node in the AI-Tree, where l is the
level number (0 ≤ l ≤ L) and t the position in
the level (1 ≤ t ≤ Ti). If l = L, the expres-
sion node(l, t) will be an element in our base
data structure, but we consider only as part of
the AI-Tree for this analysis. Figure 3 shows the
visual appearance of the node with its variables.
Such a node consists of three pointers and two
integer variables. So a node occupies 20 byte of
memory on a 32-bit architecture. The variables
for the AI-Tree node represent respectively:

Range: represents the data found in the last
level (the base data structure) with id smaller
than or equal than our id of search. If we meet
the previous condition we use the references
NextNode[0] and NextNode[1] according to the
variable segmentation. If we do not meet the

Trade-off with memory cost in MB.
levels v/s n 5,000 35,000 100,000 250,000 500,000

2 0.001 0.004 0.006 0.010 0.014
3 0.006 0.022 0.044 0.081 0.128
4 0.014 0.055 0.199 0.234 0.391
5 0.022 0.099 0.222 0.454 0.781
6 0.032 0.148 0.344 0.721 1.264
7 0.033 0.202 0.479 1.020 1.812
8 0.233 0.622 1.341 2.406
9 0.667 1.667 3.033

10 3.333

Table 2: Temporal memory cost AI-Tree.

previous condition then we navigate to the next
node in the same level (NextNode).

segmentation: represents the data found in the
last level through the references to the next level.
If the current segmentation corresponds to an id
smaller than or equal to our id of search, then
we navigate to the next level through the first
reference (NextLevel[0]). If we do not meet the
previous condition we navigate to the next level
using the second reference (NextLevel[1]).

NextLevel[0], NextLevel[1]: represent the
navigation references from one node to another
node in the next level of the AI-Tree.

NextNode: represents the navigation refer-
ence from one node to the next node in the same
level of the AI-Tree. This navigation in the same
level that is not used in normal trees, allows us
to modify the total nummber of levels in the
AI-Tree according to (8) and to produce a op-
timal trade-off between memory consumption
and performance for long amoung of data.

We will define formally every variable in each
node(l, t) according to Figure 3 as:

a = 2tDl c = (2t − 2)Dl + 1
b = (2t − 1)Dl d = (2t − 1)Dl + 1

where:
Dl =

Tl+1

2Tl

Note that we always meet the condition c ≤ b ≤
d ≤ a. Through these variables it is easy to cre-
ate the AI-Tree in a descending cascade begin-
ning from the last level. Let X be a single node
node(l, t) with l < L. X needs to complete
all its references the creation of node(l + 1, a),
where a is the variable of the current X node.
Of course we can reverse the problem so that
the next level (l + 1) would send a signal to
the level of X at the moment of the creation
of node(l+1,a). Once the reference between the

Data Structure Reconstruction
n B.List AVL-Tree AI-Tree

5,000 300,030,016 816,495 770,595
35,000 14,700,210,176 6,992,770 6,573,261

100,000 120,000,602,112 21,948,272 20,598,234
250,000 750,001,520,640 59,166,936 55,461,368
500,000 300,000,293,6832 124,833,856 116,922,744

Table 3: Operation cost for generating the cross
references between vertices, edges and
polygons.

node X and node(l+1, a) is created, new signals
from the level l+1 will be sent to the succeeding
node of X in the same level. This parallel sig-
naling system between levels according to the
variables a, b, c and d facilitates the creation of
the AI-Tree simultaneously with the creation of
the bidirectional list.

5.2 Performance

The AI-Tree uses half of the levels of a binary
tree but maintains its performance in the search
operation. We can prove this hypothesis easily
if we use a continuous function of (10). This
continuous function can be expressed as:

C ′ = L
n

1
L

2
(12)

Notice that (10) is a discreet function and (12) is
equivalent to (10) as a continuous function. The
second expression in (12) represents the worst
navigation case in the same level before navigate
at the following level in the search operation.

According to our hypothesis we can affirm the
following statement:

Let A be an AVL-Tree and B a AI-Tree. A
and B have n elements each one, then B
uses half the levels of A to have the same
performance than A does in the search op-
eration.

Using (12) and our previous statement, we can
easily prove our hypothesis1:

log2(n) · n
1

log2(n)

2
= log4(n) · n

1
log4(n)

2
(13)

Table 1 shows also the performance of the AI-
Tree using different levels and we observe that

1The left side of (13) uses L = log2(n) according to the
normal number of levels in a AVL-Tree for n data.

Polygonal Simplification
n B.List AVL-Tree AI-Tree

5,000 15,003 42,126 15,003
35,000 105,003 343,933 105,003
100,000 300,003 1,058,365 300,003
250,000 750,003 2,811,128 750,003
500,000 1,500,003 5,872,239 1,500,003

Table 4: The AI-Tree keep intact the perfor-
mance of the real time reconstruction
environment.

our hypothesis is correct according to (13). Ta-
ble 2 shows the trade-off between memory and
levels.

5.3 Creation Cost

As was mentioned, the AI-Tree is created simul-
taneously with the creation of the bidirectional
list. Although the insertion of elements into the
list has cost O(1), we must consider the creation
cost of the AI-Tree. The worst case creation for
the AI-Tree happens when it has the maximum
possible levels. Using (8) and (9) we can create
the next recurrent equation:

T (n) =

{
1 if n ≤ 4

n
4 + T

(
n
4

)
else

Solving this equation we obtain T (n) = n−1
3 .

5.4 Collective Performance

We can make an analysis considering the global
simplification process in two parts; data struc-
ture reconstruction and polygonal simplifica-
tion. These two processes can be evaluated in
function of the operations; insert (I), search (S)
and delete (D) respectively creating general cost
functions of the processes.

The data structure reconstruction implies a
continuous insertion in the bidirectional list for
n vertices, 2n triangles and 3n edges2. Also this
reconstruction needs the creation of the cross
references through search operations for 12n
vertices by triangles and edges3. It is defined

2For the relationship between number of vertices, edges
and triangles, see the Euler Formula for meshes.

3Note that the 12n search operation correspond to 3 ref-
erences to vertices by 2n triangles and 2 references by
3n edges.

the execution cost of these processes as:

n∑
i=1

I(i) +
2n∑
i=1

I(i) +
3n∑
i=1

I(i) +

6n∑
i=1

S(n) +
6n∑
i=1

S(n) + 2 ·
(

n − 1
3

)
︸ ︷︷ ︸
only AI-Tree

(14)

The polygonal simplification implies a deletion
of vertices, triangles and edges. We can assume
for this analysis a polygonal simplification at
less than 50%. The execution cost of this pro-
cess is defined as:

n∑
i=n

2

D(i) +
2n∑
i=n

D(i) +
3n∑

i= 3n
2

D(i) (15)

Through these functions we can compare the
performance of several alternatives. Our natu-
ral intention is to use the original bidirectional
list of our simplification methods but the search
operation between vertices, edges and polygons
its excessively costly. Considering that our sim-
plification process deletes information dynam-
ically, we could consider the AVL-Tree as an
alternative data structure. This solution will
improve the time problem in the cross refer-
ences reconstruction process, nevertheless, on
the other hand this change will modify the sce-
nario of our real time problem and also will in-
crease the number of operations for the simplifi-
cation process. The AI-Tree fits in our real time
scenario perfectly as Tables 3 and 4 show. We
included the creation and the elimination of the
AI-Tree in our analyses. Of course this expres-
sion in (14) is not considered in the calculations
with the bidirectional list and the AVL-Tree.

The AI-Tree not only improves the number of
operations in the reconstruction process in com-
parison to the AVL-Tree, it also does not pro-
duce alterations to prove our simplification ac-
cording to our real reconstruction process. The
AI-Tree has better performance than any other
dynamic structure for the reconstruction pro-
cess and to execute the simplification process to
our knowledge (in the simplification process the
bidirectional list offers the best performance to
eliminate dynamically data, given its cost O(1)
by cross references between geometric informa-
tion). We have not considered other aspects in

Figure 4: Examples of our simplification ap-
proach. The Stanford Bunny and Ea-
gle mesh (on the left) were simpli-
fied from 69,451 to 3,756 polyons and
from 33,072 to 2,815 polygons respec-
tively.

our previous analysis that affect the time pro-
cess as recursive implementations of the AVL-
Tree, as example, the reorganization to remain
as AVL-Tree and the navigation for rendering.
On the other hand the AI-Tree and bidirectional
lists do not need recursive implementations and
stack memory for keeping its performance and
navigation operation making it faster.

6 Results

We have tested our simplification approach un-
der a wide range of meshes. In all our tests we
keep the features of the original meshes after
thousands of applied collapse operations, guar-
anteeing the silhouette conservation in the first
0.06 seconds of simplification. In all our tests
we have used the same parameters to assure a
robust algorithm (γ = 3π

4 and µ = π
9 respec-

tively).
Figure 4 shows examples of our proposed

simplification without considering the factor
time, after 7 optimization phases in less than 2.6
seconds. It is possible to see a loss of detail af-
ter high simplification of the meshes, neverthe-
less all the features have been kept intact. No-
tice that drastic changes of curvature are kept in-
tact and these are a principal characteristic of the
meshes created under the process of reconstruc-
tion in real time (see Figure 6).

Figure 5 shows examples of our proposed er-

Figure 5: Left: original horse model (39,698
polygons). Middle and Right: ex-
amples of our proposed error metric.
The resultant meshes show different
approximations of the original mesh
curvature using µ = π

18 and µ = 5π
36

respectively.

ror metric after 7 simplification phases. The er-
ror metric allows to adjust the simplification ac-
cording to the output quality of our reconstruc-
tion process. At the moment we do not use high
restrictions for our error metric due to the low
detail of the meshes generated in the reconstruc-
tion process, but according to its improvement
we have the posibility to adjust our simplifica-
tion process.

Figure 6 show meshes created with our recon-
struction process and simplified in less than 0.06
seconds4. The simplifications of the same ones
reduces the time spend for the texturing process
and network communication in the same range
(≈ 33%).

7 Future Work

The polygonal simplification exposed here is
our first approach to simplify meshes in real
time, developed with meshes of public domain,
however we will concentrate on optimizing the
polygonal simplification based on meshes with
specific features generated under our real time
process (such as Figure 6). These meshes bear
common features of small elongenated triangles,
that are not present in otherwise typical meshes.

Although our error metric is less time con-
suming than the error metric proposed by [14],
the restriction (5) is responsible for undoing a

4These results were obtain on a machine AMD Athlon
1.8GHz with 384MB memory.

Figure 6: Examples of our simplification in real
time. Top: the result Aki and Cow
meshes obtained under the reconstruc-
tion process. Bottom: Aki mesh sim-
plified from 8,085 to 5,281 polygons
and Cow mesh from 8,020 to 5,436
polygons.

considerable amount of collapse operations. For
example, in the simplification process executed
in Figure 6 were more than 1,000 collapse op-
erations undone in each mesh, and it is not only
a non negligible lost quantity of simplification,
but also lost time. This problem is produced by
our edge collapse approach, due to the gener-
ation of polygonal intersection. Avoid this re-
striction by trying other collapse operations, that
produce less possibilities of polygonal intersec-
tion.

The reduction of data to proccess due to our
simplification give us the oportunity to work on
our reconstruction process. At the moment the
simplification is used after the reconstruction
process but we are working on integrating it in
the reconstruction process. The algorithms use
only local geometric information and the sim-
plification of intermediate meshes of the recon-
struction process will speed up the cutting of the
subsequent viewing cones.

Another use of the simplification algorithm
will be to generate different level-of-detail sets
of a scanned moving person, that could be used
in real time graphics.

Further parallelization of our VR-environ-

ment and addition of further modules into it, will
lead to a stronger use and refinement of the AI
data structure for the exchange of meshes.

Acknowledgements

The first author was supported partially by its
university of pre-grade Universidad Católica
del Norte (UCN), Chile and by the Deutscher
Akademischer Auslands Dienst (DAAD). Also
we would like to thank everyone who helped
to review drafts of this paper; Claudio Meneses,
Raphael Straub and Dieter Finkenzeller.

References

[1] Michael Fautz. Objekt- und Texturrekon-
struktion mit einer robotergeführten Kam-
era. PhD thesis, Universität Karlsruhe
(TH), 2002.

[2] Aldo Laurentini. The visual hull concept
for silhouette-based image understanding.
IEEE Transactions on Pattern Analysis
and Machine Intelligence, 1994.

[3] Jean Sébastien Franco, Clément Ménier,
Edmond Boyer, and Bruno Raffin. A dis-
tributed approach for real time 3d model-
ing. Proceedings of the 2004 IEEE Com-
puter Society Conference on Computer Vi-
sion and Pattern Recognition Workshops,
2004.

[4] Sven Thüring, Jörn Herwig, and Alfred
Schmitt. Silhouette-based motion capture
for interactive VR-systems including a rear
projection screen. In CASA 2005 Proceed-
ings, 2005.

[5] Michel van Klink and Michael S. Lew.
Decimation of visible surfaces. Pat-
tern Recognition, Fourteenth International
Conference, 1998.

[6] William J. Schroeder, Jonathan A. Zarge,
and William E. Lorensen. Decimation of
triangle meshes. SIGGRAPH 92, 1992.

[7] Pierre Alliez and Mathieu Desbrun. Pro-
gressive compression for lossless transmis-
sion of triangle meshes. SIGGRAPH 01,
2001.

[8] Chan K.F., Wong Y.T., and Kok C.W. Mul-
tiresolution mesh representation using ver-
tex cluster contraction. IEEE International
Symposium, 2001.

[9] Remi Ronfard and Jarek Rossignac. Full-
range approximation of triangulated poly-
hedra. Computer Graphics Forum, 1996.

[10] Dmitry Brodsky, BenjaminWatson,
I. Scott MacKenzie (editor), and
James Stewart (editor). Model sim-
plification through refinement. Morgan
Kaufmann Publishers, Montreal, Canada,
2000.

[11] Jianhua Wu and Leift Kobbelt. Fast mesh
decimation by multiple-choice techniques.
Vision, Modeling, Visualization 2002 Pro-
ceedings, 2002.

[12] Hugues Hoppe, Tony DeRose, Tom
Duchamp, John Mc-Donald, and Werner
Stuetzle. Mesh optimization. SIGGRAPH
93, 1993.

[13] Hugues Hoppe. Progressive meshes. SIG-
GRAPH 96, 1996.

[14] Michael Garland and Paul S. Heckbert.
Surface simplification using quadric error
metrics. SIGGRAPH 97, 1997.

[15] P. Lindstrom and G. Turk. Fast and
memory efficient polygonal simplification.
IEEE Visualization’98, 1998.

