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Abstract: This paper describes the architecture of our open 
VR system Visum which offers close to reality testing of 
mechatronic systems1. In addition to the standard 
functionality of VR systems, like navigation in 3D space, the 
following points are essential. In order to provide a realistic 
mechanical behaviour the system has to simulate kinematic 
and dynamic effects, it has to resolve collisions and the 
embodied effects of friction and impulse transfer. The 
characteristics of real mechanical axis drives and servos have 
to be emulated. The system must also provide complete 
interfaces to support the execution of real controller software; 
this methodology is termed software in the loop. We also 
present a new impulse-based algorithm for the dynamics 
simulation of linked rigid body systems. A solution for 
collision detection and resolving can easily be integrated. 
Interfaces to third party software are provided via CORBA 
and MCA2. Visum has been tested in several experiments 
and compared to existing mechatronic systems, e.g. a real 
robot arm with its controlling software. 
 
Key words: VR-system, mechatronics, dynamics 
simulation, software in the loop, humanoid robots. 

1- Introduction 
In technical complex scenarios it is common to test the 
system behaviour in a simulation environment. Compared to 
the test procedures on real systems expenses are saved. The 
simulation is used to achieve qualitative information of the 
behaviour and the functionality of the system and subsystems 
respectively. Even in an early development phase when the 
real hardware still does not exist system optimizations can be 
realized. 

                                                 
1 Research funded in part by the DFG = German Research 
Foundation. 

A simulation environment for humanoid robots with the 
possibility for the user to interact and cooperate with the 
virtual robot includes many different disciplines, like real-
time computer graphics, dynamics and devices for human 
interaction. 
The complexity of such a simulation environment demands a 
modular system architecture, e.g. complex mechatronic 
systems such as robots must be built up of simple basic 
components. Therefore basic components like servos and 
sensors must be rebuilt and simulated in software. To achieve 
a realistic behaviour of mechatronic objects in the VR-world 
a dynamics simulation is required. This is only reasonable 
when the dynamics simulation incorporates friction, collision 
detection and collision response. The system must also be 
capable to integrate third party software via adequate 
interfaces, e.g. robot control software (software in the loop). 
This can only be achieved with an open, extensible and 
flexible platform. 
 
The outline of this paper is as follows. In the next section we 
give a short overview of two tools for humanoid simulation 
systems comparable to our own. We introduce the larger 
project where our system is part of. This will be followed by 
a more detailed description of the system architecture and its 
interfaces to third party software. In the succeeding section 
we present our approach the dynamics. In the next section we 
show the results of experiments made with our system 
controlling a virtual robot arm in comparison to a real robot 
arm. We close with a short conclusion and an outlook for 
future work. 

2- Related works 
Kanehiro et al. [1] describe an open architecture humanoid 
robotics platform (OpenHRP). OpenHRP is a virtual platform 
for the investigation of humanoid robots. It consists of 
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different modules and each is implemented as a CORBA 
server to obtain a distributed system. For the simulation a 
robot model, a controller and a client is needed. The model 
defines the geometry of the robot and is usually given as a 
VRML model. The controller is a CORBA server 
implemented by the user which determines the behaviour of 
the robot. The client is needed to control the simulation. 
OpenHRP already provides a ready-made client with 3D-
graphics and 2D graph display called ISE (Integrated 
Simulation Environment). 
Kuffner et al. [2] describe a large-scale software simulation 
framework for the development and testing of robot control 
and behaviour software. The goals of their simulation system 
are to visualize the robot and its movement in a virtual 3D 
world, to provide a testing environment for the development 
and evaluation of robot control and behaviour software, to 
serve as an interactive user interface for controlling a real 
robot and to help the robot to make decisions by simulating 
the consequences of its actions. 

3- Background 
In our research context we create a VR-system for testing 
arbitrary mechatronic systems like humanoid robots. All 
controlling software running on the real hardware must be 
able to be integrated in our VR-system without any changes. 
An additional demand is to immerse the user to enable him 
on the one hand to interact with the VR-world and on the 
other hand to be recognized by virtual sensors in the VR-
world. 
We develop this VR-system in the context of the SFB 588 
“Humanoid Robots”2 to provide our partners with a testing 
environment for their controller, image and speech 
processing software. 
 
To cope with the complexity of such a simulation 
environment we develop a modular system architecture. The 
following essential components must be covered by our 
system: 
 

• dynamics simulation, 
• interfaces for third party software, 
• scene description, 
• visualization, 
• human interaction and feedback. 

 
Complex mechatronic systems such as robots are composed 
of basic components. These basic components are rebuilt and 
simulated in software. They have a graphical representation 
and parameters necessary for a dynamics simulation 
including friction, collision and collision response. For our 
research target we need virtual servos and sensors. For the 
servos we provide standardized interfaces to connect 
controller software both our own and the software from the 
robot developers. We support sensors such as cameras, 
distance sensors and so on. 

                                                 
2 Homepage of the SFB 588: http://www.sfb588.uni-
karlsruhe.de. 

 
Such a system needs a special script language to specify the 
entire VR-world. This includes the graphical description like 
the geometry, the appearance with colour and texture, point 
of view and lighting. To describe mechanical properties we 
provide parameters like mass, inertia tensor, centre of gravity 
and initial state of motion. Also properties for the objects 
surface are provided, like coefficients of friction and 
restitution. To build a robot arm, objects are linked together 
via different types of joints. At the location of such joints, 
servos can be placed to achieve an appropriate robot arm. As 
parameters they have a maximum torque, desired angle and 
angular speed. They return the actual angle and angular 
speed. 
 
To give the user a three dimensional visual feedback a 
powerful 3D vision system based on passive stereo projection 
is used. 
 
To interact in the VR-world the user is tracked to control his 
avatar in the VR-scene. With the virtual cameras the robot 
watches the gestures of the human being, respectively, his 
avatar. Then the robot can react appropriately to a recognized 
gesture. With data gloves the user is able to cooperate with 
the robot, e.g. carrying of a table. 
 
In the following, we describe how we solved the 
requirements defined in this section. 

4- System architecture 
The Visum architecture incorporates nearly all of the above 
mentioned features like the dynamics and graphical models 
for a virtual environment. The ability to connect the user to 
the system in order to interact in the virtual world has not 
been fully implemented yet. Developing our system we took 
the following list of common demands into account: 
 

• easy extensibility, 
• open API, 
• easy to debug, 
• easy to handle, 
• easy integration of robot control software. 

 
To have a platform independent system we use Python 
instead of a low level programming language like C/C++. 
With the high level language Python we have a good 
foundation for a flexible and easy to extend system. Only the 
aspect of real-time is at odds with Python. In some cases it is 
much slower then C/C++. But Python offers several options 
to speed up programs, e.g. the time critical code is written in 
C/C++ and wrapped via Pyrex3 to be accessed from Python. 
The actual VR-system Visum is fully implemented in Python 
using a predefined set of abstract base classes. In the derived 
classes the proper functionalities are implemented. They are 
integrated in the system as Plug-ins to keep the core program 
untouched. 

                                                 
3 Other wrappers are SWIG, Sip and Boost. 
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The Visum base classes are: 
 

• Scene: acts as a container for the VR-world objects. 
• Node: all objects which can be stored in the scene 

are from the type node. 
• Controller: a controller transforms a node. This is 

where the dynamics is located. 
• Renderer: displays the scene on the screen (e.g. via 

OpenGL). 
 
There are also additional classes supporting a base interaction 
in the scene (dolly, translate, rotate) which are not mentioned 
here. Distinguished nodes in the scene are: 
 

• Agent: these objects possess an own logic for their 
behaviour. 

• Sensors: they supply the agents with input data. 
• Actuators: the drive of an agent. 

 
The simulation only takes place in a controller object. Every 
controller can modify an arbitrary number of nodes. This 
enables the parallel use of different simulation methods in a 
single VR-world. Actually, we support two simulation 
methods. These are our own method and the Open Dynamics 
Engine ODE [3]. Nodes without a controller are just static 
scenery. 
 
The cycle of a single simulation step is portrayed in figure 1. 
The first three steps concern the sensors, the agents and the 
actuators. Afterwards every controller is executed and the 
nodes receive their new position in the scene. Finally the 
renderer produces the image of the scene. To render the scene 
in Python we use OpenGL. It is fast enough, because the 
OpenGL API is directly mapped to Python and the geometry 
is drawn using OpenGL’s display lists. 

 
Fig. 1 : Cycle of a single simulation step. 

At the moment our scene description is given in pure Python 
code. This is highly versatile but not useful for non-experts. 
Therefore we design for future purposes a human readable 

and easy to use scene description  
 
Due to the high flexibility of Python, even during runtime, 
scene nodes can receive new attributes and methods, e.g. a 
controller object may add attributes to its nodes needed for 
the simulation, like friction parameters. 
Software can be integrated in Visum via controllers. In 
section 6 we give an example of how we attached a controller 
software for an Amtec [4] arm via MCA2 (Modular 
Controller Architecture Version 2) [5]. MCA2 is a modular 
network transparent framework for controlling robots and 
other kinds of hardware, developed at the FZI4 in Karlsruhe 
Germany. 
With this feature third party software can be tested in our 
virtual environment. Because the controller software uses 
MCA2 the real hardware can be easily substituted by the 
virtual hardware. Therefore, the controller software runs 
without changes on the real as well on the virtual hardware. 
We describe this technique as software in the loop. 
Integrating an entire robot in our VR-environment will result 
in a robot in the loop simulation. 
 
To allow immediate visual feedback of the 3D situation and 
not to restrict the moving environment, the user stands in 
front of a rear projection screen using polarised glasses (see 
figure 2). 
To enable communication and interaction between the “real” 
user and the “virtual” robot it is necessary to integrate the 3D 
model of the human shape in the “virtual” vision system of 
the robot. 
Normally this could be done by electromagnetic motion 
capture systems. But the exorbitant prices and the various 
restrictions (extensive calibration, limited moving area, no 
image of the surface, etc.) forced us to look for more 
effective solutions. Currently we investigate a camera based 
system which uses the concept of visual hulls introduced 
by [6]. Eight calibrated cameras surround the “real” user. Out 
of these 8 images the human silhouette is calculated. The 
intersection of these silhouette cones defines an approximate 
geometric representation of the human shape called the visual 
hull. In a final step this polygon model is textured in real-
time and added as avatar to the VR-world. Off-line 
experiments with captured images of static situations promise 
refresh-rates near to real-time [7]. 
 
 

                                                 
4 FZI: Forschungszentrum Informatik, http://www.fzi.de 

get sensor input 

behaviour logic 
(compute actuator input) 

execute actuators 

execute controllers 

render scene
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Fig. 2 : Power wall. 

 

5- Impulse-based dynamics simulation 
We will now describe our new dynamics simulation 
algorithm in some detail. Our algorithm demonstrates that the 
well-known impulse-based collision resolving algorithms 
(e.g. Mirtich and Canny [8]) can be generalized and extended 
to deal with interconnected rigid body systems. The goal of 
this presentation is to point out the basic principle of our new 
algorithm. A discussion of its strengths and weaknesses is 
presented at the end of this chapter. 
 
All forces we will deal with are impulsive forces or impulses. 
If you integrate Newton’s second law ( ) ( )F t m v t= ⋅ the 
continuous force ( )F t  in the time interval 0t h= …  is 
transformed into an impulse I with no time parameter t  any 
more: 
 

0 0
( ) ( ) ( ( ) (0))

h h
I F t dt m v t dt m v h v m v= = = − = ⋅∆∫ ∫  

 
An impulse I applied to a mass point m changes the velocity 
instantaneously by /v I m∆ = . This concept is easily 
transferred to torques. 
 
Definition: A system of n  linked rigid bodies is defined by 
the following parameters 
 
(1) km R∈  the total mass of body 1k n= , 

(2) ( ) 3
kC t R∈  its (possibly moving) center of gravity, 

(3) ( )
.

3( )k
k

dC t
C t R

dt
= ∈  its velocity, 

(4) ( ) 3
k t Rω ∈  its angular velocity or spin, 

(5) kJ  its 3x3-matrix of inertia (referring to body space 
coordinates), 

(6) kR  its orientation matrix mapping vectors from 
body space coordinates to world coordinates. 

 
What is still missing are the interconnections between the 
rigid bodies. To simplify this short presentation, we only 

consider spherical joints. In real life numerous other types of 
interconnections are needed, e.g. spring and damper 
elements, revolute joints, prismatic joints, screw joints, 
cylindrical joints and points sliding on planes and curves etc. 
We have not yet implemented all types of joints, but as far as 
we know until now, our simulation method allows a wide 
variety of joints including all the above mentioned ones. 
 
Definition: (continued ...) 
 
(7) Attached to each body is a list of points 3

kiP R∈  
fixed on this body and moving with the body: 

}{ 1, , ,k k kiP P P= … …  
(8) The list of all spherical joints is given by a set of 4-

tupels of indices 
1 1 2 2{ , ( , , , ), }L k i k i= … …  

where 1k , 2k  denote 2 different bodies and 
1 1k iP and 

2 2k iP  are two points fixed on the respective bodies. 
 
A joint ( , , ', ')k i k i  thus defines a pair of points where two 
rigid bodies are connected or fixed to each other. Thus a joint 
of this type has three degrees of freedom, whereas a revolute 
joint with one degree of freedom can be modeled with 2 
joints of the type introduced above. For our method it is of no 
importance whether there are open or closed kinematic 
chains. An intermixture of both is allowed. 
 
The global strategy of our simulation algorithm is as follows: 
At time t  we assume to have a consistent state of the n-body 
system. That implies, that the actual positions of the bodies in 
world space fulfill the distance condition 

( ) ( ) ( )' ', , , : maxki k ik i k i L P t P t D′ ′∀ ∈ − ≤ . 

where Dmax is a small constant, e.g. Dmax= 610− . 
We do not postulate the equality of the velocities of these 
points, i. e. ' '( ) ( )ki k iP t P t= , for reasons that will be explained 
later. 
 
Our dynamics simulation method does never use continuous 
forces but impulses. This implies that a time step from t to 
t+h is executed without continuous inner forces. The bodies 
instead move on ballistic curves. The continuous inner forces 
are substituted by suitable impulse changes at time t. But how 
can we calculate the correct impulses to end up at time t+h in 
a consistent state? It is done iteratively and this is probably 
the most innovative detail of our new algorithm. We use a 
look-ahead function 
 

( ) ( , ( ), )ki kiP t h Integrate k P t h+ =  
 
that simulates the motion of body k on ballistic curves inside 
the time step h. Integrate is not a simple function. In order to 
calculate the position of point ( )kiP t h+ , we have to solve the 
equations of motion of the rigid body with subscript k in the 
time interval [t,t+h]. This unconstrained motion of a single 
rigid body in the absence of external forces is described by 
the well-known Euler equations (in body space coordinates) 
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1( ) ( ( ) ( ( )))t J t J tω ω ω−= − × ⋅  

 
for the rotational part and by Newton’s second law for the 
motion of the center of mass. For the solution of these 
differential equations an elegant solution up to any degree of 
precision is possible with the Taylor series method.  J is the 
inertia tensor of the body and it is advisable to use the 
principal axes of inertia as directions of the body-fixed 
coordinates. In this case, only the diagonal elements 

11 22 33, ,J J J are possibly nonzero. We calculate the inverse by 
setting the diagonal elements to 11 22 331/ ,1/ ,1/J J J , and if 
one of the iiJ  is zero, it remains so.  
The iterative procedure for the calculation of the impulses 
substituting the inner forces operates as follows: 
 
Given a consistent state of the linked rigid body system at 
time t. 
While there is a spherical joint ( , , ', ')k i k i L∈  with 

Distance ' '( ) ( ) maxki k iP t h P t h D= + − + >  
Do: ' ': ( ) ( )ki k idelta P t h P t h= + − + ; Determine a 
correcting impulse F (details explained later) and change the 
angular velocities by  

1( ) : ( ) (( ( ) ( )) )k k k ki kt t J P t C t Fω ω −= + ⋅ − × , 
1

' ' ' ' ' '( ) : ( ) (( ( ) ( )) ( ))k k k k i kt t J P t C t Fω ω −= + ⋅ − × −  
and the velocities of the respective centers of gravity by 

( ) ( ) /k k kC t C t F m= + , 

' ' '( ) ( ) /k k kC t C t F m= −  
End 
 
Remarks: The matrices 1 1( )T

k k k kJ R J R− −= ⋅ ⋅  are the inverses 
of the inertia matrices in world space coordinates. The look-
ahead point locations ( )kiP t h+  and ' ' ( )k iP t h+  are 
calculated by the function Integrate. With the updated 
parameters of the two bodies we normally will have 

' '( ) ( ) maxki k iP t h P t h D+ − + ≤ . If not, the while loop will 
repeat until all joints are corrected. Is the new state of the 
body system still consistent after a correction is done inside 
the while loop? The answer is yes, since increments of 
impulses only change velocities, not positions. 
For the calculation of the distance correcting impulse F we 
use the formulae 
 1 ( ( ) ( ))ki kr P t C t= − , 
 2 ' ' '( ( ) ( ))k i kr P t C t= − , 

 1
1 1 1 1( ( )) / kv J r F r F m−∆ = × × + , 

 1
2 2 2 2 '( ( )) / kv J r F r F m−∆ = ×− × −  

 1 2 /v v delta h∆ + ∆ = . 
Since F is the only unknown term, the last line is in fact a 
linear system of three equations that gives us a good 
approximation for the unknown F. The idea behind this is to 
close the gap delta at time t+h between the two joint points 
by a suitable change of the velocity increments 1v∆ and 2v∆  
at time t. A small problem is left. We calculate F at time t and 

do not include the influences by nutational changes of spin 
axes, whereas the function Integrate does include nutation. 
This small deviation is of no practical importance since 
corrections at one joint normally disturb the distance 
conditions of others, but in the future of the iterative process 
the deltas will be smaller and smaller. We have never seen a 
mechanical model where this iteration does not converge, if 
the step size h is choosen small enought. 
When the while loop terminates, we have reached such a 
state, that we can advance to time t+h. We use the function 
Integrate and Newton’s law to do this properly. The 
correcting strategy of the while loop including look-aheads 
guarantees that the new system state at time t+h is consistent. 
The correcting impulses F substitute the continuous inner 
forces at the joints. 
 
But what about the velocities? Immediately after entering the 
new state at time t+h we normally observe 

' '( ) ( )ki k iP t h P t h+ ≠ + .These undesirable differences of 
velocities of joint points can be eliminated. We use 
essentially the same structure of the while loop as described 
above but this time without a look-ahead. We finally end up 
with 

( ) ( ) ( )' ' max, , , : ki k ik i k i L P t h P t h V′ ′∀ ∈ + − + ≤  

where maxV is a suitably small constant, say 4
max 10V −= m / s. 

Experience with the simulation of numerous linked rigid 
body models has shown, that the velocity correction as 
described above is only of a cosmetic nature. It has no 
measurable influence on the point positions at time t i h+ ⋅ , 

1, 2,i = …  and is thus only of use if accurate values for 
velocities are needed. But, after this remark, it should be 
mentioned that the velocity correction by impulsive forces at 
a fixed time is exactly that algorithm that is needed to resolve 
collisions of linked rigid body systems, see e.g. chapter 6 of 
Wittenburg [9]. 
 
Our experience with the new iterative impulse-based 
dynamics simulation method so far can be summarized as 
follows: We can compute very accurate solutions or, if we 
relax the parameter maxD  and choose 0.04h s= , 
simulations can be made very fast. Our new algorithm is a so-
called “anytime” algorithm. Even if in real-time 
environments the simulation is under extreme time stress and 
the number of correction steps of the while loop for each joint 
must be reduced to 1, mechanical models do not disintegrate 
but are damped a little bit. On a contemporary PC with 2 
GHz, about 200,000 while loops are executed per second.  
If h  and maxD are made smaller and smaller, the calculated 
solution converges to the exact physical solution of the linked 
rigid body system. The error is of the order 2( )O h . If 

maxD is reduced, e.g. to values of 610− , energy conservation 
is nearly perfect even for mechanical models with a chaotic 
behaviour. Since we do not use systems of differential 
equations as is the case for other dynamics simulation 
software known to us, all the pre-processing is of a trivial 
nature and this is also true for our main iterative while loop.  
All this qualifies our simulation method for implementations 
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in future VR systems with fully integrated rigid body 
dynamics. Collision detection and collision resolving as 
described e.g. by Mirtich and Canny [8] and others can be 
included easily. Since all our forces are of an impulsive 
nature, it is easy to integrate various collision laws and 
Coulomb friction including slipping. We will report on these 
matters in forthcomming publications. 

6- Experiments  
In this section we present three example scenarios that have 
been simulated in our experimental VR environment. The 
first two are just examples of simple robots having servos and 
sensors which enable them to move around and explore their 
environment. The third example is a simulation of a real 
robot arm which is made of a couple of Amtec modules and 
is located at one of our partner institutes, namely the Institut 
für Prozessrechentechnik, Automation und Robotik (see 
figure 5). 
 
In figure 3 you can see a screenshot of Visum running a 
simulation of two simple robots. This example shows two 
kinds of locomotion. In the background you see a cart that is 
driven by wheels and in the foreground there is a robot that 
moves by crawling across the floor. Every movement of both 
robots is driven by the dynamics simulation. The simulation 
of friction enables the robots to move around. 
The car has four wheels which are attached to the chassis by 
simulated joints. The joints have motors that can be velocity 
controlled. The front wheels have an additional degree of 
freedom which can be used to steer the cart. 
The other robot has an arm made of three segments that are 
connected with revolute joints which are position controlled. 
By stretching and flexing this simple arm and scraping on the 
floor the robot is able to pull itself forward. 
 

 
Fig. 3 : Two simple robots moving in a virtual 
environment. 

 
In the second example (figure 4) the cart from above was 
extended and got a distance sensor attached to its chassis. 
This sensor casts a ray in a particular direction to measure the 
distance to the next obstacle. Using this sensor the robot can 

actually explore its environment and avoid running into 
obstacles or against walls. 
 

 
Fig. 4 : A robot cart exploring its environment. 

 
The next example is a bit more involved, it demonstrates the 
simulation of a robot arm which is controlled by the very 
same software that is also used for the real robot arm. 
Additionally, the controlling software and the VR 
environment are executed on two separate machines. 
The real robot arm is an assembly of several Amtec 
PowerCube modules (see figure 5). The arm itself has 7 
degrees of freedom and can be controlled by several modes. 
The controlling software builds on top of the MCA2 
framework. 
 

 
Fig. 5 : The real Amtec robot arm. 

 
In MCA2 you break down your controlling software in small 
functional chunks called modules that all have the same basic 
structure and that encapsulate a specific task that can be 
reused in other controllers. Such modules can then be 
connected with each other forming a hierarchy. They can also 
be combined into groups or parts. The basic structure of 
modules, groups and parts is always the same. They receive 
controller input from above, do their internal processing and 
pass their controller output values on to other modules. In the 
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other direction they receive sensor input from below, do 
again some internal processing and pass sensor output up to 
whatever module they are connected to. Furthermore, they 
can have internal parameters and variables necessary to 
accomplish their respective task (see figure 6). Any of the 
controller, sensor or internal data can be inspected or 
modified by special tools at runtime which helps testing or 
debugging the controlling software. 
 

 

Fig. 6 : Structure of a MCA2 module. 
 
At some point in the MCA2 hierarchy of the original 
controller software there is a MCA2 part that directly controls 
the actual hardware. This part receives the joint angles and 
maximum speeds as controller input and provides the current 
joint angles as sensor output. In order to do a simulation this 
particular part has to be replaced by a part with the same 
interface but that does not control the real hardware but the 
virtual hardware. All other modules remain the same. MCA2 
already allows such a replacement even without recompiling 
the programs. You could even connect both parts at once and 
control the real robot and the virtual robot at the same time. 
Of course, only one of them can actually be part of the 
control loop. And as MCA2 can transfer data also via a TCP 
connection, the simulation part can even run on a different 
machine than the actual controlling software. By using these 
mechanisms it is easy to switch between the real robot and 
the simulation. In the simulation the virtual robot arm runs in 
real-time. It consists of seven hinge joints for the arm and 
two slider joints for the gripper. 
A screenshot of the simulation can be seen in figure 7. The 
robot model was originally modelled in ROBCAD, imported 
into 3D Studio MAX where it was prepared for the 
simulation and finally exported into our own format that is 
actually just Python source code. This data can then be 
imported into our VR environment. During the initialization 
of the simulation our MCA2 simulation part is launched and 
gets connected to the controlling software. Now everything is 
set up to receive the joint angles and maximum speeds of the 
original controlling software and forward them to the VR 
environment where it will drive the virtual robot arm. 
 

 
Fig. 7 : The simulated Amtec robot arm. 

7- Conclusion and future work 
In this paper we introduced Visum, a VR-system for the 
interactive evaluation of complex mechatronic systems. In 
the description of our research background we outlined the 
scope of our work and defined the requirements. Afterwards 
we explained the system architecture and how it was 
designed to meet the given requirements. Then we presented 
our new algorithm for dynamic simulations. In an experiment 
where we compared a real and a virtual robot arm we 
demonstrated that our system is capable of integrating third 
party controller software on our virtual hardware. 
 
As we mentioned above, the immersion of the user is not 
integrated yet. Based on our successful off-line experiments 
with captured images of static situations we will rearrange 
this software to work in real-time with eight cameras 
generating a 3D model of the user. 
To enable non-experts to work with our system, we design a 
human readable and easy to use scene description language 
including graphics and dynamics. Thereby our design is 
oriented by common languages such as VRML, POVRAY 
and so on. The script is based on a semantic description and 
has different encodings like X3D. For easy integration in 
Visum we will have a Python-encoding. To be able to 
manipulate the script with existing editors and modellers we 
will include a VRML-encoding. 
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