
Virtual Concept 2003 Biarritz - France November, 5-7

 1

VISUM: A VR SYSTEM FOR THE INTERACTIVE AND
DYNAMICS SIMULATION OF MECHATRONIC SYSTEMS

D. Finkenzeller 1, M. Baas 1, S. Thüring 1, S. Yigit 2, A. Schmitt 1

(1) : University of Karlsruhe
Institut für Betriebs- und Dialogsysteme

Am Fasanengarten 5
76128 Karlsruhe

Germany
+49 (0)721 608 3965

E-mail: {aschmitt, baas, dfinken,
thuering}@ira.uka.de

(2) : University of Karlsruhe
Institut für Prozessrechentechnik, Automation

und Robotik
Kaiserstr. 12

76128 Karlsruhe
Germany

+49 (0)721 608 8140
E-mail: yigit@ira.uka.de

Abstract: This paper describes the architecture of our open
VR system Visum which offers close to reality testing of
mechatronic systems1. In addition to the standard
functionality of VR systems, like navigation in 3D space, the
following points are essential. In order to provide a realistic
mechanical behaviour the system has to simulate kinematic
and dynamic effects, it has to resolve collisions and the
embodied effects of friction and impulse transfer. The
characteristics of real mechanical axis drives and servos have
to be emulated. The system must also provide complete
interfaces to support the execution of real controller software;
this methodology is termed software in the loop. We also
present a new impulse-based algorithm for the dynamics
simulation of linked rigid body systems. A solution for
collision detection and resolving can easily be integrated.
Interfaces to third party software are provided via CORBA
and MCA2. Visum has been tested in several experiments
and compared to existing mechatronic systems, e.g. a real
robot arm with its controlling software.

Key words: VR-system, mechatronics, dynamics
simulation, software in the loop, humanoid robots.

1- Introduction
In technical complex scenarios it is common to test the
system behaviour in a simulation environment. Compared to
the test procedures on real systems expenses are saved. The
simulation is used to achieve qualitative information of the
behaviour and the functionality of the system and subsystems
respectively. Even in an early development phase when the
real hardware still does not exist system optimizations can be
realized.

1 Research funded in part by the DFG = German Research
Foundation.

A simulation environment for humanoid robots with the
possibility for the user to interact and cooperate with the
virtual robot includes many different disciplines, like real-
time computer graphics, dynamics and devices for human
interaction.
The complexity of such a simulation environment demands a
modular system architecture, e.g. complex mechatronic
systems such as robots must be built up of simple basic
components. Therefore basic components like servos and
sensors must be rebuilt and simulated in software. To achieve
a realistic behaviour of mechatronic objects in the VR-world
a dynamics simulation is required. This is only reasonable
when the dynamics simulation incorporates friction, collision
detection and collision response. The system must also be
capable to integrate third party software via adequate
interfaces, e.g. robot control software (software in the loop).
This can only be achieved with an open, extensible and
flexible platform.

The outline of this paper is as follows. In the next section we
give a short overview of two tools for humanoid simulation
systems comparable to our own. We introduce the larger
project where our system is part of. This will be followed by
a more detailed description of the system architecture and its
interfaces to third party software. In the succeeding section
we present our approach the dynamics. In the next section we
show the results of experiments made with our system
controlling a virtual robot arm in comparison to a real robot
arm. We close with a short conclusion and an outlook for
future work.

2- Related works
Kanehiro et al. [1] describe an open architecture humanoid
robotics platform (OpenHRP). OpenHRP is a virtual platform
for the investigation of humanoid robots. It consists of

Virtual Concept 2003 Biarritz - France November, 5-7

 2

different modules and each is implemented as a CORBA
server to obtain a distributed system. For the simulation a
robot model, a controller and a client is needed. The model
defines the geometry of the robot and is usually given as a
VRML model. The controller is a CORBA server
implemented by the user which determines the behaviour of
the robot. The client is needed to control the simulation.
OpenHRP already provides a ready-made client with 3D-
graphics and 2D graph display called ISE (Integrated
Simulation Environment).
Kuffner et al. [2] describe a large-scale software simulation
framework for the development and testing of robot control
and behaviour software. The goals of their simulation system
are to visualize the robot and its movement in a virtual 3D
world, to provide a testing environment for the development
and evaluation of robot control and behaviour software, to
serve as an interactive user interface for controlling a real
robot and to help the robot to make decisions by simulating
the consequences of its actions.

3- Background
In our research context we create a VR-system for testing
arbitrary mechatronic systems like humanoid robots. All
controlling software running on the real hardware must be
able to be integrated in our VR-system without any changes.
An additional demand is to immerse the user to enable him
on the one hand to interact with the VR-world and on the
other hand to be recognized by virtual sensors in the VR-
world.
We develop this VR-system in the context of the SFB 588
“Humanoid Robots”2 to provide our partners with a testing
environment for their controller, image and speech
processing software.

To cope with the complexity of such a simulation
environment we develop a modular system architecture. The
following essential components must be covered by our
system:

• dynamics simulation,
• interfaces for third party software,
• scene description,
• visualization,
• human interaction and feedback.

Complex mechatronic systems such as robots are composed
of basic components. These basic components are rebuilt and
simulated in software. They have a graphical representation
and parameters necessary for a dynamics simulation
including friction, collision and collision response. For our
research target we need virtual servos and sensors. For the
servos we provide standardized interfaces to connect
controller software both our own and the software from the
robot developers. We support sensors such as cameras,
distance sensors and so on.

2 Homepage of the SFB 588: http://www.sfb588.uni-
karlsruhe.de.

Such a system needs a special script language to specify the
entire VR-world. This includes the graphical description like
the geometry, the appearance with colour and texture, point
of view and lighting. To describe mechanical properties we
provide parameters like mass, inertia tensor, centre of gravity
and initial state of motion. Also properties for the objects
surface are provided, like coefficients of friction and
restitution. To build a robot arm, objects are linked together
via different types of joints. At the location of such joints,
servos can be placed to achieve an appropriate robot arm. As
parameters they have a maximum torque, desired angle and
angular speed. They return the actual angle and angular
speed.

To give the user a three dimensional visual feedback a
powerful 3D vision system based on passive stereo projection
is used.

To interact in the VR-world the user is tracked to control his
avatar in the VR-scene. With the virtual cameras the robot
watches the gestures of the human being, respectively, his
avatar. Then the robot can react appropriately to a recognized
gesture. With data gloves the user is able to cooperate with
the robot, e.g. carrying of a table.

In the following, we describe how we solved the
requirements defined in this section.

4- System architecture
The Visum architecture incorporates nearly all of the above
mentioned features like the dynamics and graphical models
for a virtual environment. The ability to connect the user to
the system in order to interact in the virtual world has not
been fully implemented yet. Developing our system we took
the following list of common demands into account:

• easy extensibility,
• open API,
• easy to debug,
• easy to handle,
• easy integration of robot control software.

To have a platform independent system we use Python
instead of a low level programming language like C/C++.
With the high level language Python we have a good
foundation for a flexible and easy to extend system. Only the
aspect of real-time is at odds with Python. In some cases it is
much slower then C/C++. But Python offers several options
to speed up programs, e.g. the time critical code is written in
C/C++ and wrapped via Pyrex3 to be accessed from Python.
The actual VR-system Visum is fully implemented in Python
using a predefined set of abstract base classes. In the derived
classes the proper functionalities are implemented. They are
integrated in the system as Plug-ins to keep the core program
untouched.

3 Other wrappers are SWIG, Sip and Boost.

Virtual Concept 2003 Biarritz - France November, 5-7

 3

The Visum base classes are:

• Scene: acts as a container for the VR-world objects.
• Node: all objects which can be stored in the scene

are from the type node.
• Controller: a controller transforms a node. This is

where the dynamics is located.
• Renderer: displays the scene on the screen (e.g. via

OpenGL).

There are also additional classes supporting a base interaction
in the scene (dolly, translate, rotate) which are not mentioned
here. Distinguished nodes in the scene are:

• Agent: these objects possess an own logic for their
behaviour.

• Sensors: they supply the agents with input data.
• Actuators: the drive of an agent.

The simulation only takes place in a controller object. Every
controller can modify an arbitrary number of nodes. This
enables the parallel use of different simulation methods in a
single VR-world. Actually, we support two simulation
methods. These are our own method and the Open Dynamics
Engine ODE [3]. Nodes without a controller are just static
scenery.

The cycle of a single simulation step is portrayed in figure 1.
The first three steps concern the sensors, the agents and the
actuators. Afterwards every controller is executed and the
nodes receive their new position in the scene. Finally the
renderer produces the image of the scene. To render the scene
in Python we use OpenGL. It is fast enough, because the
OpenGL API is directly mapped to Python and the geometry
is drawn using OpenGL’s display lists.

Fig. 1 : Cycle of a single simulation step.

At the moment our scene description is given in pure Python
code. This is highly versatile but not useful for non-experts.
Therefore we design for future purposes a human readable

and easy to use scene description

Due to the high flexibility of Python, even during runtime,
scene nodes can receive new attributes and methods, e.g. a
controller object may add attributes to its nodes needed for
the simulation, like friction parameters.
Software can be integrated in Visum via controllers. In
section 6 we give an example of how we attached a controller
software for an Amtec [4] arm via MCA2 (Modular
Controller Architecture Version 2) [5]. MCA2 is a modular
network transparent framework for controlling robots and
other kinds of hardware, developed at the FZI4 in Karlsruhe
Germany.
With this feature third party software can be tested in our
virtual environment. Because the controller software uses
MCA2 the real hardware can be easily substituted by the
virtual hardware. Therefore, the controller software runs
without changes on the real as well on the virtual hardware.
We describe this technique as software in the loop.
Integrating an entire robot in our VR-environment will result
in a robot in the loop simulation.

To allow immediate visual feedback of the 3D situation and
not to restrict the moving environment, the user stands in
front of a rear projection screen using polarised glasses (see
figure 2).
To enable communication and interaction between the “real”
user and the “virtual” robot it is necessary to integrate the 3D
model of the human shape in the “virtual” vision system of
the robot.
Normally this could be done by electromagnetic motion
capture systems. But the exorbitant prices and the various
restrictions (extensive calibration, limited moving area, no
image of the surface, etc.) forced us to look for more
effective solutions. Currently we investigate a camera based
system which uses the concept of visual hulls introduced
by [6]. Eight calibrated cameras surround the “real” user. Out
of these 8 images the human silhouette is calculated. The
intersection of these silhouette cones defines an approximate
geometric representation of the human shape called the visual
hull. In a final step this polygon model is textured in real-
time and added as avatar to the VR-world. Off-line
experiments with captured images of static situations promise
refresh-rates near to real-time [7].

4 FZI: Forschungszentrum Informatik, http://www.fzi.de

get sensor input

behaviour logic
(compute actuator input)

execute actuators

execute controllers

render scene

Virtual Concept 2003 Biarritz - France November, 5-7

 4

Fig. 2 : Power wall.

5- Impulse-based dynamics simulation
We will now describe our new dynamics simulation
algorithm in some detail. Our algorithm demonstrates that the
well-known impulse-based collision resolving algorithms
(e.g. Mirtich and Canny [8]) can be generalized and extended
to deal with interconnected rigid body systems. The goal of
this presentation is to point out the basic principle of our new
algorithm. A discussion of its strengths and weaknesses is
presented at the end of this chapter.

All forces we will deal with are impulsive forces or impulses.
If you integrate Newton’s second law () ()F t m v t= ⋅ the
continuous force ()F t in the time interval 0t h= … is
transformed into an impulse I with no time parameter t any
more:

0 0
() () (() (0))

h h
I F t dt m v t dt m v h v m v= = = − = ⋅∆∫ ∫

An impulse I applied to a mass point m changes the velocity
instantaneously by /v I m∆ = . This concept is easily
transferred to torques.

Definition: A system of n linked rigid bodies is defined by
the following parameters

(1) km R∈ the total mass of body 1k n= ,

(2) () 3
kC t R∈ its (possibly moving) center of gravity,

(3) ()
.

3()k
k

dC t
C t R

dt
= ∈ its velocity,

(4) () 3
k t Rω ∈ its angular velocity or spin,

(5) kJ its 3x3-matrix of inertia (referring to body space
coordinates),

(6) kR its orientation matrix mapping vectors from
body space coordinates to world coordinates.

What is still missing are the interconnections between the
rigid bodies. To simplify this short presentation, we only

consider spherical joints. In real life numerous other types of
interconnections are needed, e.g. spring and damper
elements, revolute joints, prismatic joints, screw joints,
cylindrical joints and points sliding on planes and curves etc.
We have not yet implemented all types of joints, but as far as
we know until now, our simulation method allows a wide
variety of joints including all the above mentioned ones.

Definition: (continued ...)

(7) Attached to each body is a list of points 3

kiP R∈
fixed on this body and moving with the body:

}{ 1, , ,k k kiP P P= … …
(8) The list of all spherical joints is given by a set of 4-

tupels of indices
1 1 2 2{ , (, , ,), }L k i k i= … …

where 1k , 2k denote 2 different bodies and
1 1k iP and

2 2k iP are two points fixed on the respective bodies.

A joint (, , ', ')k i k i thus defines a pair of points where two
rigid bodies are connected or fixed to each other. Thus a joint
of this type has three degrees of freedom, whereas a revolute
joint with one degree of freedom can be modeled with 2
joints of the type introduced above. For our method it is of no
importance whether there are open or closed kinematic
chains. An intermixture of both is allowed.

The global strategy of our simulation algorithm is as follows:
At time t we assume to have a consistent state of the n-body
system. That implies, that the actual positions of the bodies in
world space fulfill the distance condition

() () ()' ', , , : maxki k ik i k i L P t P t D′ ′∀ ∈ − ≤ .

where Dmax is a small constant, e.g. Dmax= 610− .
We do not postulate the equality of the velocities of these
points, i. e. ' '() ()ki k iP t P t= , for reasons that will be explained
later.

Our dynamics simulation method does never use continuous
forces but impulses. This implies that a time step from t to
t+h is executed without continuous inner forces. The bodies
instead move on ballistic curves. The continuous inner forces
are substituted by suitable impulse changes at time t. But how
can we calculate the correct impulses to end up at time t+h in
a consistent state? It is done iteratively and this is probably
the most innovative detail of our new algorithm. We use a
look-ahead function

() (, (),)ki kiP t h Integrate k P t h+ =

that simulates the motion of body k on ballistic curves inside
the time step h. Integrate is not a simple function. In order to
calculate the position of point ()kiP t h+ , we have to solve the
equations of motion of the rigid body with subscript k in the
time interval [t,t+h]. This unconstrained motion of a single
rigid body in the absence of external forces is described by
the well-known Euler equations (in body space coordinates)

Virtual Concept 2003 Biarritz - France November, 5-7

 5

1() (() (()))t J t J tω ω ω−= − × ⋅

for the rotational part and by Newton’s second law for the
motion of the center of mass. For the solution of these
differential equations an elegant solution up to any degree of
precision is possible with the Taylor series method. J is the
inertia tensor of the body and it is advisable to use the
principal axes of inertia as directions of the body-fixed
coordinates. In this case, only the diagonal elements

11 22 33, ,J J J are possibly nonzero. We calculate the inverse by
setting the diagonal elements to 11 22 331/ ,1/ ,1/J J J , and if
one of the iiJ is zero, it remains so.
The iterative procedure for the calculation of the impulses
substituting the inner forces operates as follows:

Given a consistent state of the linked rigid body system at
time t.
While there is a spherical joint (, , ', ')k i k i L∈ with

Distance ' '() () maxki k iP t h P t h D= + − + >
Do: ' ': () ()ki k idelta P t h P t h= + − + ; Determine a
correcting impulse F (details explained later) and change the
angular velocities by

1() : () ((() ()))k k k ki kt t J P t C t Fω ω −= + ⋅ − × ,
1

' ' ' ' ' '() : () ((() ()) ())k k k k i kt t J P t C t Fω ω −= + ⋅ − × −
and the velocities of the respective centers of gravity by

() () /k k kC t C t F m= + ,

' ' '() () /k k kC t C t F m= −
End

Remarks: The matrices 1 1()T

k k k kJ R J R− −= ⋅ ⋅ are the inverses
of the inertia matrices in world space coordinates. The look-
ahead point locations ()kiP t h+ and ' ' ()k iP t h+ are
calculated by the function Integrate. With the updated
parameters of the two bodies we normally will have

' '() () maxki k iP t h P t h D+ − + ≤ . If not, the while loop will
repeat until all joints are corrected. Is the new state of the
body system still consistent after a correction is done inside
the while loop? The answer is yes, since increments of
impulses only change velocities, not positions.
For the calculation of the distance correcting impulse F we
use the formulae
 1 (() ())ki kr P t C t= − ,
 2 ' ' '(() ())k i kr P t C t= − ,

 1
1 1 1 1(()) / kv J r F r F m−∆ = × × + ,

 1
2 2 2 2 '(()) / kv J r F r F m−∆ = ×− × −

 1 2 /v v delta h∆ + ∆ = .
Since F is the only unknown term, the last line is in fact a
linear system of three equations that gives us a good
approximation for the unknown F. The idea behind this is to
close the gap delta at time t+h between the two joint points
by a suitable change of the velocity increments 1v∆ and 2v∆
at time t. A small problem is left. We calculate F at time t and

do not include the influences by nutational changes of spin
axes, whereas the function Integrate does include nutation.
This small deviation is of no practical importance since
corrections at one joint normally disturb the distance
conditions of others, but in the future of the iterative process
the deltas will be smaller and smaller. We have never seen a
mechanical model where this iteration does not converge, if
the step size h is choosen small enought.
When the while loop terminates, we have reached such a
state, that we can advance to time t+h. We use the function
Integrate and Newton’s law to do this properly. The
correcting strategy of the while loop including look-aheads
guarantees that the new system state at time t+h is consistent.
The correcting impulses F substitute the continuous inner
forces at the joints.

But what about the velocities? Immediately after entering the
new state at time t+h we normally observe

' '() ()ki k iP t h P t h+ ≠ + .These undesirable differences of
velocities of joint points can be eliminated. We use
essentially the same structure of the while loop as described
above but this time without a look-ahead. We finally end up
with

() () ()' ' max, , , : ki k ik i k i L P t h P t h V′ ′∀ ∈ + − + ≤

where maxV is a suitably small constant, say 4
max 10V −= m / s.

Experience with the simulation of numerous linked rigid
body models has shown, that the velocity correction as
described above is only of a cosmetic nature. It has no
measurable influence on the point positions at time t i h+ ⋅ ,

1, 2,i = … and is thus only of use if accurate values for
velocities are needed. But, after this remark, it should be
mentioned that the velocity correction by impulsive forces at
a fixed time is exactly that algorithm that is needed to resolve
collisions of linked rigid body systems, see e.g. chapter 6 of
Wittenburg [9].

Our experience with the new iterative impulse-based
dynamics simulation method so far can be summarized as
follows: We can compute very accurate solutions or, if we
relax the parameter maxD and choose 0.04h s= ,
simulations can be made very fast. Our new algorithm is a so-
called “anytime” algorithm. Even if in real-time
environments the simulation is under extreme time stress and
the number of correction steps of the while loop for each joint
must be reduced to 1, mechanical models do not disintegrate
but are damped a little bit. On a contemporary PC with 2
GHz, about 200,000 while loops are executed per second.
If h and maxD are made smaller and smaller, the calculated
solution converges to the exact physical solution of the linked
rigid body system. The error is of the order 2()O h . If

maxD is reduced, e.g. to values of 610− , energy conservation
is nearly perfect even for mechanical models with a chaotic
behaviour. Since we do not use systems of differential
equations as is the case for other dynamics simulation
software known to us, all the pre-processing is of a trivial
nature and this is also true for our main iterative while loop.
All this qualifies our simulation method for implementations

Virtual Concept 2003 Biarritz - France November, 5-7

 6

in future VR systems with fully integrated rigid body
dynamics. Collision detection and collision resolving as
described e.g. by Mirtich and Canny [8] and others can be
included easily. Since all our forces are of an impulsive
nature, it is easy to integrate various collision laws and
Coulomb friction including slipping. We will report on these
matters in forthcomming publications.

6- Experiments
In this section we present three example scenarios that have
been simulated in our experimental VR environment. The
first two are just examples of simple robots having servos and
sensors which enable them to move around and explore their
environment. The third example is a simulation of a real
robot arm which is made of a couple of Amtec modules and
is located at one of our partner institutes, namely the Institut
für Prozessrechentechnik, Automation und Robotik (see
figure 5).

In figure 3 you can see a screenshot of Visum running a
simulation of two simple robots. This example shows two
kinds of locomotion. In the background you see a cart that is
driven by wheels and in the foreground there is a robot that
moves by crawling across the floor. Every movement of both
robots is driven by the dynamics simulation. The simulation
of friction enables the robots to move around.
The car has four wheels which are attached to the chassis by
simulated joints. The joints have motors that can be velocity
controlled. The front wheels have an additional degree of
freedom which can be used to steer the cart.
The other robot has an arm made of three segments that are
connected with revolute joints which are position controlled.
By stretching and flexing this simple arm and scraping on the
floor the robot is able to pull itself forward.

Fig. 3 : Two simple robots moving in a virtual
environment.

In the second example (figure 4) the cart from above was
extended and got a distance sensor attached to its chassis.
This sensor casts a ray in a particular direction to measure the
distance to the next obstacle. Using this sensor the robot can

actually explore its environment and avoid running into
obstacles or against walls.

Fig. 4 : A robot cart exploring its environment.

The next example is a bit more involved, it demonstrates the
simulation of a robot arm which is controlled by the very
same software that is also used for the real robot arm.
Additionally, the controlling software and the VR
environment are executed on two separate machines.
The real robot arm is an assembly of several Amtec
PowerCube modules (see figure 5). The arm itself has 7
degrees of freedom and can be controlled by several modes.
The controlling software builds on top of the MCA2
framework.

Fig. 5 : The real Amtec robot arm.

In MCA2 you break down your controlling software in small
functional chunks called modules that all have the same basic
structure and that encapsulate a specific task that can be
reused in other controllers. Such modules can then be
connected with each other forming a hierarchy. They can also
be combined into groups or parts. The basic structure of
modules, groups and parts is always the same. They receive
controller input from above, do their internal processing and
pass their controller output values on to other modules. In the

Virtual Concept 2003 Biarritz - France November, 5-7

 7

other direction they receive sensor input from below, do
again some internal processing and pass sensor output up to
whatever module they are connected to. Furthermore, they
can have internal parameters and variables necessary to
accomplish their respective task (see figure 6). Any of the
controller, sensor or internal data can be inspected or
modified by special tools at runtime which helps testing or
debugging the controlling software.

Fig. 6 : Structure of a MCA2 module.

At some point in the MCA2 hierarchy of the original
controller software there is a MCA2 part that directly controls
the actual hardware. This part receives the joint angles and
maximum speeds as controller input and provides the current
joint angles as sensor output. In order to do a simulation this
particular part has to be replaced by a part with the same
interface but that does not control the real hardware but the
virtual hardware. All other modules remain the same. MCA2
already allows such a replacement even without recompiling
the programs. You could even connect both parts at once and
control the real robot and the virtual robot at the same time.
Of course, only one of them can actually be part of the
control loop. And as MCA2 can transfer data also via a TCP
connection, the simulation part can even run on a different
machine than the actual controlling software. By using these
mechanisms it is easy to switch between the real robot and
the simulation. In the simulation the virtual robot arm runs in
real-time. It consists of seven hinge joints for the arm and
two slider joints for the gripper.
A screenshot of the simulation can be seen in figure 7. The
robot model was originally modelled in ROBCAD, imported
into 3D Studio MAX where it was prepared for the
simulation and finally exported into our own format that is
actually just Python source code. This data can then be
imported into our VR environment. During the initialization
of the simulation our MCA2 simulation part is launched and
gets connected to the controlling software. Now everything is
set up to receive the joint angles and maximum speeds of the
original controlling software and forward them to the VR
environment where it will drive the virtual robot arm.

Fig. 7 : The simulated Amtec robot arm.

7- Conclusion and future work
In this paper we introduced Visum, a VR-system for the
interactive evaluation of complex mechatronic systems. In
the description of our research background we outlined the
scope of our work and defined the requirements. Afterwards
we explained the system architecture and how it was
designed to meet the given requirements. Then we presented
our new algorithm for dynamic simulations. In an experiment
where we compared a real and a virtual robot arm we
demonstrated that our system is capable of integrating third
party controller software on our virtual hardware.

As we mentioned above, the immersion of the user is not
integrated yet. Based on our successful off-line experiments
with captured images of static situations we will rearrange
this software to work in real-time with eight cameras
generating a 3D model of the user.
To enable non-experts to work with our system, we design a
human readable and easy to use scene description language
including graphics and dynamics. Thereby our design is
oriented by common languages such as VRML, POVRAY
and so on. The script is based on a semantic description and
has different encodings like X3D. For easy integration in
Visum we will have a Python-encoding. To be able to
manipulate the script with existing editors and modellers we
will include a VRML-encoding.

Acknowledgement:
The authors would like to thank J. Wittenburg for his
engaged and valuable advice on dynamics. Thanks go also to
J. Bender, St. Preuß and G. Stelzner for their close
cooperation within the Visum project.

8- Bibliography
[1] Kanehiro F., Fujiwara K., Kajita S., Yokoi K., Kaneko K.,
Hirukawa H., Nakamura Y., Yamane K. Open Architecture
Humanoid Robotics Platform. In Proc. of IEEE International
Conference on Robotics and Automation (ICRA2002), Vol.1,

Virtual Concept 2003 Biarritz - France November, 5-7

 8

pages 24-30, Washington D.C., USA, May 2002.

[2] Kuffner J.J., Kagami S., Inaba M., and Inoue H.
Graphical simulation and high-level control of humanoid
robots. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS2000), Vol. 3, pages 1943-1948,
Takamatsu, Japan, November 2000.

[3] Smith R. Open dynamics engine.
http://opende.sourceforge.net. June 2003.

[4] Amtec robotics GmbH. http://www.amtec-robotics.com.
June 2003.

[5] Scholl K.-U. MCA2 - Modular Controller Architecture
Version 2. http://mca2.sourceforge.net. June 2003.

[6] Laurentini A. The Visual Hull Concept for Silhouette-
Based Image Understanding. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 16, No. 2, February
1994.

[7] Fautz M. Objekt und Texturrekonstruktion mit einer
robotergeführten Kamera. Dissertation, Universität Karlsruhe
(TH), Fakultät für Informatik, October 2002.

[8] Mirtich, B., Canny J. Impulse-based Simulation of Rigid
Bodies. Symposion on Interactive 3D Graphics, Monterey,
Cal., April 1995.

[9] J. Wittenburg. Dynamics of Systems of Rigid Bodies. B.
G. Teubner, Stuttgart 1977.

