
Interactive Modeling of Implicit Surfaces using a Direct Visualization Approach
with Signed Distance Functions

Tim Reiner a, Gregor Mückl b, Carsten Dachsbacher a

a Computer Graphics Group, Karlsruhe Institute of Technology, Germany
b SimTech, University of Stuttgart, Germany

Abstract

Modeling appealing virtual scenes is an elaborate and time-consuming task, requiring not only training and experience,
but also powerful modeling tools providing the desired functionality to the user. In this paper, we describe a modeling
approach using signed distance functions as an underlying representation for objects, handling both conventional and
complex surface manipulations. Scenes defined by signed distance functions can be stored compactly and rendered di-
rectly in real-time using sphere tracing. Hence, we are capable of providing an interactive application with immediate
visual feedback for the artist, which is a crucial factor for the modeling process. Moreover, dealing with underlying
mathematical operations is not necessary on the user level. We show that fundamental aspects of traditional modeling
can be directly transferred to this novel kind of environment, resulting in an intuitive application behavior, and de-
scribe modeling operations which naturally benefit from implicit representations. We show modeling examples where
signed distance functions are superior to explicit representations, but discuss the limitations of this approach as well.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—Modeling packages

Keywords: distance functions, implicit surfaces, implicit surface rendering, interactive modeling

1. Introduction

Implicit descriptions of smooth continuous surfaces
are well established in computer graphics, next to
discrete approximations like the ubiquitous polygonal
meshes. Implicit surfaces spark interest due to their
intrinsic way of representing solid objects, aptitude
for constructive solid geometry, and eminent blending
abilities.

However, it is inherently difficult to render implicit
surfaces directly in real-time. This requires an exten-
sive incremental search for surface points, which are
neither explicitly given nor easy to compute. Con-
sequently, indirect visualization techniques, such as
marching cubes [7], became popular, which generate
discrete approximations of surfaces first, making them
fast to render. However, these intermediate steps intro-
duce geometric aliasing, giving up both smoothness and
high-frequency details.

Implicit surfaces are amenable to ray tracing, but it
is difficult to find intersections of rays with complex
surfaces analytically. Thus, ray marching is often used
to render implicit surfaces directly, where possible in-
tersections are determined by marching along a ray in
small steps until a surface is hit. Sphere tracing [4]

speeds up ray marching significantly, but requires dis-
tance surfaces [1], implicitly described by functions that
return a measurement or bound of the geometric dis-
tance, instead of a generic algebraic distance.

It has always been tempting and desirable to use im-
plicit surfaces for shape modeling. Providing an interac-
tive modeling environment for this purpose is difficult,
as it involves the necessity to render implicit surfaces in
real-time in order to provide constant visual feedback.
Indirect visualization techniques are capable of doing
so, but introduce another problem: while editing a sur-
face, continuous re-evaluations of its discrete approx-
imation are required. Unless this is achieved in real-
time, interactivity gets interrupted at this crucial point.
Reducing approximation quality helps, but it removes
subtle details and introduces artifacts as well.

In this paper, we make the following contributions:

• We compose complex implicit surfaces using
signed distance functions. Then, we show how to
translate these compositions into a fragment shader
that renders defined surfaces directly on graphics
hardware. As a result of using signed distance
functions, we are able to apply sphere tracing to
efficiently render a scene in real-time.

Preprint submitted to SMI 2011 March 15, 2011

• We present a complete modeling environment for
objects and scenes that are implicitly defined by
signed distance functions. As we are able to ren-
der them in real-time, we provide full interactivity
for the modeling tool. We are neither dependent
on indirect visualization techniques nor restricted
by spatial limitations. Likewise, explicit grids or
approximations are not required.

2. Related Work

Previously, a lot of pioneer work in implicit shape
modeling has been done. In this section, we focus on
fundamental and most related work, ranging from the
notion and rendering of implicit surfaces to editing op-
erators and modeling environments for them.

Groundbreaking, Hypertextures [15] combined im-
plicit shapes with textures to model various phenomena,
extending the notion of shape by including surrounding
volumes. Turk and O’Brien [23, 24] introduced new
shape transformations and interpolation techniques for
implicit surfaces.

Loop and Blinn [6] showed how to render implicit
surfaces in real-time on the GPU using analytic tech-
niques for solving for roots of polynomials. Hence, they
are limited to fourth order algebraic surfaces, and form
objects by assembling piecewise smooth algebraic sur-
faces, which were introduced by Sederberg [20].

It becomes cumbersome to evaluate functions defin-
ing implicit surfaces of increasing complexity. Con-
sequently, distance fields attracted attention, which
explicitly store distance information inside a three-
dimensional grid. Again, this leads to geometric alias-
ing in trade for fast distance evaluations. Obviously, this
representation requires a tremendous amount of mem-
ory if used naively, and therefore substantially limits the
possible extent of a scene. Frisken et al. [3] proposed
adaptively sampled distance fields, which significantly
reduce memory consumption for detailed objects.

The level set method, first presented by Osher and
Sethian [12] and thoroughly explained by Osher and
Fedkiw [13], defines a surface using a time-varying
scalar function. It spawned a large body of research and
gained recognition in modeling surface deformations.

Museth et al. [10] contributed editing operators for
implicit surfaces based on level set models. Surfaces
are imported as distance fields into their level set frame-
work, allowing arbitrary surfaces modified with a sin-
gle procedure. As their framework is based on uniform
grids, it suffers from technical limitations again, partic-
ularly spatial limits, memory constraints, and artifacts
due to discretization.

Comprehensive approaches to interactive implicit
modeling were proposed. A primary contribution is
HyperFun [16], that has been extended by others in var-
ious directions. In its essential form, it provides a sym-
bolic user interface for direct textual input in a high-
level geometric language. Note that interactivity does
not extend to real-time surface visualization.

Our approach closely resembles BlobTrees [25], that
have been widely adapted. Its hierarchical structure
stores implicit surfaces at the leaves and places compo-
sition operators at internal nodes. ShapeShop [19] is a
prominent example based on the BlobTree. Interactivity
is achieved by introducing spatial caching for objects.

WarpCurves [22], inspired by FiberMesh [11] and
Wires [21], extends ShapeShop to allow for interactive
manipulation of implicit surfaces using explicit curve-
based spatial deformations. Recently, Martinez Esturo
et al. [9] described a method for continuous deforma-
tions of implicit surfaces focusing on volume, continu-
ity, and topology conservation.

Related important areas of research in interactive
modeling are haptics-based [5] and sketch-based [19]
user interfaces for convenient sculpting.

Note that the modeling environments mentioned be-
fore use an indirect marching cubes visualization, con-
trary to our real-time direct visualization of the scene.

3. Describing Scenes with SDFs

This section briefly introduces SDFs (signed distance
functions), shows how to describe primitives with them,
and how transformations and combinations can be ap-
plied in order to create complex objects. Eventually,
whole scenes emerge by assembling several objects.

3.1. Definition

We mostly stick to the notation from [13], which pro-
vides, inter alia, a comprehensive introduction to im-
plicit surfaces. Let Ω− and Ω+ be the space in and out-
side of an implicit surface, respectively, and ∂Ω the in-
terface in between, i.e., the set of points composing the
surface. A signed distance function φ(~x) is defined as

φ(~x) =

min(|~x − ~xI |) if ~x ∈ Ω+,
0 if ~x ∈ ∂Ω,
−min(|~x − ~xI |) if ~x ∈ Ω−, for all ~xI ∈ ∂Ω,

and returns the Euclidean distance from ~x to its closest
surface point, with a negative sign if inside. Thus, SDFs
are a subset of implicit functions, which rather imply
algebraic distances.

2

3.2. Properties
SDFs retain characteristics of implicit functions, yet

provide more beneficial properties, such as |∇φ| = 1.
This is comprehensible, since φ is Euclidean distance,
and satisfies the criteria of sphere tracing precisely; see
Section 4.2. Note that the equation is not true for points
equidistant to at least two interface points, where the
path of steepest descent is ambiguous. Fortunately, we
can safely ignore this issue, as we march along given
ray directions only.

We are interested in providing a comprehensive vari-
ety of flexible modeling operations and transformations.
In exchange, we comply with producing distorted dis-
tance functions that do not yield the accurate Euclidean
distance anymore. If 0 < |∇φ| < 1, sphere tracing decel-
erates but still ensures not to penetrate surfaces. Alas,
this is not the case for |∇φ| > 1, but sphere tracing is
robust enough if a bound is known. Section 4.2 presents
a concept to compensate for gradients too steep.

As a matter of particular interest, SDFs remain mono-
tonic across the interface, not having a kink like (un-
signed) distance functions. This allows reliable gradi-
ent constructions, e.g., using central differences, which
is required for illumination and shading.

3.3. Describing Primitives
Many primitives can be described directly using an

SDF. For example, φ(~x, r) = |~x| − r describes a sphere at
the origin with radius r. Other basic primitives such as
tori and infinite planes, cylinders, and cones are easy to
describe as well.

Given the SDF of a two-dimensional curve, it can be
easily extended to a solid of revolution. Distances are
evaluated by projecting points in question onto the plane
where the curve is defined.

Primitives featuring hard edges between surface re-
gions require SDFs to have corresponding kinks. This
can be accomplished by composing individual SDFs for
each surface region, using case-by-case analysis which
region is closest to a point in question. We try to
avoid case-by-case analysis in our shaders, however, as
branching is still an expensive operation on the GPU.
Instead, we edge surfaces by switching function spaces.
For instance, a sphere formed using the L∞ metric rep-
resents an axis-aligned cube. In this way, we can state
an SDF for a box with width w, height h, and depth d as

φ(~x,w, h, d) = max(|~x1| − w/2, |~x2| − h/2, |~x3| − d/2).

This SDF returns a Chebyshev distance, which can be
greater than the Euclidean distance. This is the case for
a point ~p outside the box, whose nearest surface point is

(a) Euclidean metric, (b) L∞ metric.

Figure 1: Box isocontours for different metrics.

~pI , if the line through ~p and ~pI is not parallel to one of
the coordinate axes (see Fig. 1.) Note that this provokes
more sphere tracing steps during rendering, but is still
much faster and superior to branching thanks to efficient
GPU implementations of min/max-functions.

3.4. Describing Transformations
In order to apply a transformation T to a surface de-

scribed by φ(~x), the inverse transformation is applied
to the domain. Hence, φ(T−1(~x)) describes the trans-
formed surface.

Any concatenation of translations, rotations, and re-
flections is a global isometry on Euclidean spaces, i.e.,
all properties of the SDF are preserved. This, however,
does not hold for morphing, blending, and non-linear
transformations used to model complex and appealing
objects. These transformations distort the Euclidean
distance, and we need to make sure that surfaces are
still amenable to sphere tracing.

In the following we will discuss the application of
transformations to SDFs, starting with transformations
as in traditional modeling tools, followed by artistic
ones that are easy to define implicitly.

3.4.1. Rigid Body Transformation
Applying translations and proper rotations preserves

the Euclidean distance. Thus, to rotate and translate an
object described by φ(~x), we evaluate φ(R(ê,−θ)~x − ~t)
instead, where R(ê, θ) is a matrix describing a rotation
around an axis ê by angle θ, and ~t is the translation vec-
tor.

3.4.2. Scaling
To apply a uniform scale by factor s, we evaluate

s · φ(s−1~x). Note the final multiplication by s, since
|∇φ(s−1~x)| = s−1 violates the Euclidean distance. Un-
fortunately, a compensation for non-uniform scalings
by factors sx, sy, sz is not as straightforward. A final
multiplication by min(sx, sy, sz) ensures that the gradi-
ent magnitude does not exceed 1, which is desirable for
sphere tracing. However, as scaling factors drift apart,

3

Figure 2: Blend between box and sphere with twist.

distances get overestimated more and more along the
axis of the widest stretch, decelerating sphere tracing
significantly.

3.4.3. Eminent Implicit Operations
Particular operations are amazingly simple to apply

to implicit surfaces. A prime example is constructive
solid geometry (CSG). Unions, intersections, and dif-
ferences of two objects A and B, described by φA and
φB, satisfy the following statements:

φA∪B(~x) = 0 ⇔ min(φA(~x), φB(~x)) = 0,
φA∩B(~x) = 0 ⇔ max(φA(~x), φB(~x)) = 0,
φA−B(~x) = 0 ⇔ max(φA(~x),−φB(~x)) = 0.

Note that unions cause wrong distances inside objects,
whereas intersections implicate the L∞ metric outside.

Blending between two objects is trivial as well:

(1 − α) · φA(~x) + α · φB(~x),

using a blend factor α. An alternative notion is to set A
at the origin, and blend over to B while moving away:

max(0, 1 − s · |~x|) · φA(~x) + min(1, s · |~x|) · φB(~x),

with a stretch factor s defining the transition region.
A twist is easily described implicitly:

ξa(~x) =

 x1 cos a(x2) − x3 sin a(x2)
x2

x1 sin a(x2) + x3 cos a(x2)

 ,
with a linear function a defining amount and offset.

Fig. 2 shows an example for a blend between a sphere
and a box, where a twist is applied subsequently. On the
far left, a negative α is used. A box is frequently used to
demonstrate how edges remain continuous and sharp.

Figure 3: Displaced sphere using procedural textures.

Displacement mapping can be easily applied to sur-
faces by simply adding or subtracting values to the re-
sults of SDFs. Fig. 3 shows an example. Using proce-
dural textures, surfaces remain continuous and smooth.

Whereas blending is non-trivial on meshes, twists and
displacements are easy, but only look good for highly
tessellated meshes. A major advantage of implicit de-
scriptions is that meshes don’t have to be tessellated and
regenerated over and over again during deformations.

By applying the modulo operator to the domain, in-
finite replications of an object can be defined. Jitter-
ing can be added to break the visible equidistant pat-
tern. For natural scenes, such as many trees in a forest,
a Poisson distribution yields much more appealing and
convincing results, yet there is no implicit topology be-
tween neighboring objects anymore. The results of this
implicit replication technique are comparable to those
of geometry instancing on graphics hardware.

3.5. Arranging Scenes

Individual objects, described by SDFs φi(~x), can be
easily combined to a single SDF representing the entire
scene:

min
i∈S

(φi(~x)) = 0⇔ ~x ∈
⋃
i∈S

∂Ωi.

4. Interactive Modeling using SDFs

Signed distance functions and the transformations de-
scribed in the previous section form the basis of our
modeling environment. Fig. 10 displays the user inter-
face. We provide an intuitive environment that looks
and behaves similar to traditional modeling software.

4

This is accomplished by sticking to well-known user in-
terface design patterns that assist experienced artists in
being productive right from the start.

The key feature is the scene management that has to
fulfill two requirements. First, it has to provide the flex-
ibility to reflect all aforementioned shapes and transfor-
mations. Second, it must be possible to transform the
scene representation quickly into a fragment shader that
is suitable for real-time rendering on graphics hardware.

In this section, we first describe our interactive ren-
dering system for SDFs and the underlying data struc-
tures. Performance is crucial to allow for interac-
tive scene manipulation and immediate visual feedback.
Next, we discuss the modeling tools that we provide and
demonstrate their flexibility by means of several exam-
ples. Eventually, we discuss combinations with tradi-
tional polygon modeling, and benefits and drawbacks
of our modeling approach.

4.1. Scene Graph Traversal
We store all scene objects and transformations in a

connected acyclic scene graph that is presented to the
user as a hierarchical tree structure. Primitives are
represented by leaf nodes, while internal nodes store
transformations and operations applied to their distance
functions. Altogether, the root node represents the
whole scene. The user can modify the hierarchy by re-
arranging nodes via drag-and-drop at any time.

After modifying the scene graph, i.e., adding, al-
tering, rearranging, or deleting nodes, a new fragment
shader has to be generated. This is achieved by a depth-
first traversal of the scene graph. Every visited node N
prepends its required uniform variables and functions to
the shader, applies its transformations, and asks its chil-
dren to append their source fragments as arguments of
the result statement of N. Eventually, primitives write
out calls to their corresponding basic signed distance
functions. To compose a scene out of individual objects,
min-functions are used (see Section 3.5).

A small example follows, using the object shown in
Fig. 2. It has been composed using blend and twist
transformations on a box and a sphere as follows:

φ
[
ξ−1

a

(
(1 − α) · φBox(~x) + α · φSphere(~x)

)]
.

Listing 1 shows the generated fragment shader source.
There, p corresponds to ~x, vec2 a to the linear twist
definition of ξa, and alpha to the blend factor α.

4.2. Ray Marching
For a point ~x on a ray, evaluating the all-embracing

min-function (see Section 3.5) of the generated frag-

Listing 1: Fragment Shader Source Example
float sp(vec3 p, float r)
{

return length(p) - r;
}

float box(vec3 p, vec3 dim)
{

p = abs(p) - dim;
return max(max(p.x, p.y), p.z);

}

uniform float alpha;
uniform vec2 a;

float twist(vec3 p)
{

float new_x = p.x * cos(a.x*p.y + a.y)
- p.z * sin(a.x*p.y + a.y);

p.z = p.x * sin(a.x*p.y + a.y)
+ p.z * cos(a.x*p.y + a.y);

p.x = new_x;

return box(p, vec3(0.5, 1.5, 0.5))

* (1.0-alpha) + sp(p, 1.0) * alpha;
}

float phi(vec3 p)
{

return twist(p);
}

ment shader yields the distance from ~x to its closest sur-
face. One can safely march this distance within a single
step along the ray without penetrating a surface. This
technique is called sphere tracing [4], and accelerates
ray marching significantly. When the distance is below
a certain threshold, ~x is considered to be a surface point.

As discussed in the previous section, certain transfor-
mations violate the Euclidean distance. A counteracting
heuristic method is to sample the space within the scene
at several points and then adjust the marching step size
according to the gradient. Nonetheless, this is likely to
fail for extreme pathological surfaces and volatile gra-
dients. If the surface is unintentionally penetrated, and
given that the object has not been skipped at all, it is
still possible to revert to the last step and proceed again
conservatively.

As a last resort, we offer an interface to manually
decelerate the ray marching process when approach-
ing surfaces, however, this user interaction is required
rarely and for extreme deformations only. We experi-
enced good results by progressively decelerating sphere
tracing when approaching surfaces. This allows for

5

Figure 4: Modeling a candy cane using manipulators for translations, twisting, and bending.

marching with larger step sizes far away from volumes,
and proceed carefully only near wrinkles in pathological
surfaces, i.e., where it is really needed.

4.3. Manipulating Objects
Manipulators are convenient and powerful visual

tools to interactively alter objects and control trans-
formations. Our modeling tool offers the functional-
ity of common and established manipulators, known
from professional traditional modeling environments, to
work on SDFs. This makes our environment as intuitive
and convenient as possible.

Primitives and transformations possess particular, in-
dividual properties. For instance, an ordinary sphere
has a radius, and a rigid body transformation holds both
a translation vector and a rotation quaternion. These
properties are not numerically fixed within the fragment
shader; instead, they are represented by corresponding
uniform variables. Thus, we can modify many scene
parameters without regenerating and recompiling the
shader.

We propose a three-way mapping between properties,
their corresponding uniform variables, and the state of
appropriate interactive manipulators. Rigid body trans-
formations, to give an example, are mapped to arrows
and disks, for translations along and rotations around
particular axes. During manipulation, the state of the
manipulator is interpreted and the value of its mapped
property is updated. The associated uniform values in
the fragment shader are updated upon changes. In this
way, rendering a single frame is sufficient to reflect the
current state, which is crucial for interactivity.

Fig. 4 gives a small example, where manipulators are
used to model a candy cane. The user starts by placing

three cylinders using translation manipulators. Then,
joint twisting of these cylinders begins by dragging up
a twisting manipulator. Eventually, a candy cane is
formed through bending the object.

A specific characteristic of implicit surfaces is that
prior transformations inside the hierarchical scene struc-
ture can still be manipulated without any further efforts.
In the previous example, the user is still able to modify
the twist parameter after bending the candy cane.

In addition to manipulators, our modeling environ-
ment offers a property-value editor. This interface suits
well for manual adjustments and modifying properties
that are not covered by manipulators.

Lastly, an experienced programmer is given the op-
portunity to directly edit the generated fragment shader
source. This provides a wide-ranging freedom of ex-
pression to define new types of objects, e.g., fractal
shapes like the Menger sponge (see Fig. 7).

5. Implementation Details

Our fully functional interactive modeling environ-
ment, based on the concepts mentioned before, is writ-
ten in C++ using Qt 4.7, OpenGL, and GLSL. A few
implementation details follow.

Interactive Scene Modeling. The key component for in-
teractive modeling is a fragment shader that is gener-
ated by translating the scene graph into a composition
of GLSL code fragments, representing all individual
SDFs, operations, and transformations. Subsequently,
the sphere tracing code is appended, which is then used
to render the scene in real-time.

6

Hybrid Rendering. An interactive modeling environ-
ment provides more than a simple view into the scene.
Users are able to interact with the application, to select
objects, which appear highlighted then, and to manipu-
late these objects. All GUI elements in our application
are rendered with standard OpenGL and overlayed af-
ter ray marching. When combining ray marching with
rasterization, everything has to merge seamlessly. Thus,
the OpenGL modelview-projection matrices are set ac-
cording to the camera specified for ray marching. The
grid is rasterized with enabled depth test against the
scene. For picking and highlighting selected objects we
use an additional buffer, containing unique IDs for every
visible object.

Shading. Surface points are shaded using the gradi-
ent, estimated via central differences, as normal vec-
tor. Shadow rays are cast to each light source, and the
shadow test is performed using sphere tracing again. We
can also render soft shadow effects easily: we keep track
of the minimum evaluated distance dmin to any object
during ray marching along a shadow ray. For small dis-
tances, 0 < dmin < `, we assume that the surface point
is located within the penumbra region. The penumbra
region extends for an increasing `, and dmin/` ∈ (0, 1)
yields a shadowing factor. This is akin to [14], how-
ever, instead of having to compute auxiliary distances,
we already obtained them during ray marching.

Using SDFs also allows us to increase the shad-
ing quality by approximating ambient occlusion as de-
scribed by Evans [2] (see Fig. 5).

With negligible additional computational cost, we are
able to produce plausible soft shadows and ambient oc-
clusion. For modeling purposes, they provide important
visual cues, supporting the user or artist in better per-
ceiving objects and their interrelations [8, 18].

~xI

(a) Open region,

~xI

(b) concave region.

Figure 5: Ambient occlusion approximation. The SDF
is sampled along the normal of a surface point. For
points on open convex regions, it returns the same value
as the distance along the normal, whereas for points on
occluded concave regions, it yields smaller values.

Figure 6: Organic structure on a displaced torus.

Optimizations. Due to entirely implicit representations,
we are able to create complex, large scenes. These,
however, are costly to render as many objects contribute
to the distance evaluation during ray marching. Bound-
ing volume hierarchies are well suited to reduce the
rendering cost in this case. For sophisticated objects
involving tedious distance evaluations, an SDF may
safely return the distance to their bounding boxes first,
given that points in question are outside. Moreover, ray
marching is only necessary inside a bounding box.

Interface to Polygonal Meshing. Any part of the scene
modeled with SDFs can be exported as a triangle mesh.
Our environment uses the 3D surface mesh generator of
CGAL [17], the Computational Geometry Algorithms
Library. Vice versa, we can integrate triangle meshes
into our environment. For this, we transform a mesh
into a discrete distance field stored as a regular 3D grid
of floating point values. Such objects seamlessly inte-
grate into our modeling framework.

6. Results and Discussion

It is impossible to claim that implicit descriptions
are generally more appropriate for surface modeling
than other established approaches, such as mesh-based,
point-based, or voxel-based representations. In the fol-
lowing, we discuss examples where the appropriateness
varies from case to case. Moreover, we provide a de-
tailed report on the performance of our system, and dis-
cuss the limitations of our approach.

Examples. Our approach is well suited to model or-
ganic structures as in Fig. 6, and natural objects, such
as tree trunks, for instance. These objects feature noisy
and bumpy surfaces with smooth displacements.

7

Figure 7: Two examples of exploiting the modulo operator. Left: implicitly defined Menger sponge at iteration 5.
Right: infinite replications of the candy cane, spanning the entire three-dimensional space.

Modeling a coffee mug is a popular choice to demon-
strate CSG abilities. For the artist, the modeling process
using our environment (Fig. 8) is the very same as with
traditional mesh-based tools. Internally, on the other
hand, it is less effort and much easier for us to gener-
ate and maintain a proper representation. Moreover, the
mug features smooth continuous surfaces naturally.

Fig. 7 shows a Menger sponge constructed using
SDFs. We start with a single box and carve out an in-
finite pattern of rectangular cuboids using the modulo
operator. This subtractive approach is completely differ-
ent from constructing a mesh procedurally. Our implicit
definition is easy to grasp, whereas mesh construction
can be tricky and involved. Nevertheless, neither tech-
nique is substantially more practical.

Union

Difference Morph

Hyperize
Difference

Figure 8: Coffee mug modeled using CSG and SDFs.

Performance. Next, we evaluate the performance of our
environment on an Intel Core i7-860 system, equipped
with an nVidia GeForce GTX 470 graphics card. The
main modeling viewport has a resolution of 1280×1024,
and full illumination and shading is enabled.

We obtain a frame rate higher than 400 fps for a single
primitive, e.g., a sphere or a box, roughly spanning the
entire viewport. We see frame rates of more than 75 fps
for the torus depicted in Fig. 6, displaced by layers of
procedural noise functions, and the coffee mug (Fig. 8).
A single candy cane (Fig. 4) renders with 170 fps. Ap-
plying the modulo operator to its domain, as depicted
in Fig. 7, produces infinite replications. With disabled
shadows, we still obtain an interactive frame rate of 16
fps for the scene.

A Menger sponge at iteration 0 renders with 220 fps
for viewport filling views as depicted in Fig. 7. The
frame rate decreases for increasing iterations: about 83
fps for one, 42 fps for two, and eventually, 18 fps for
five iterations.

Note that image order rendering, such as sphere trac-
ing, is directly dependent on the viewport resolution; we
obtain more than 60 fps in 640×480 resolution for the
iteration 5 Menger sponge.

Shader Compilation. The more objects are added to
the scene, the longer the compile time for the fragment
shader takes. We do not meet a problem for rather plain
scenes, as they compile within a few milliseconds, but
as scene complexity increases, compile time does so as
well. Fig. 9 shows how long it takes to compile the frag-
ment shader for increasing numbers of different types of
primitives. The plain textual generation of the shader it-
self is negligible.

Using #pragma optimize(off) speeds up GLSL
shader compilation in trade for rendering performance.

8

 0 5 10 15 20 25 30 35 40 45 50
0

1000
2000
3000
4000
5000
6000
7000
8000

number of primitives

co
m

pi
le

 ti
m

e
in

 m
ill

is
ec

on
ds

cones

tori spheres

boxes

Figure 9: Compiling the fragment shader takes more
time for an increasing amount of objects within a scene.

This helps to keep up interactivity and responsiveness,
while an optimized version is compiled in the back-
ground as a separate CPU thread. Note that optimization
results vary heavily dependent on the graphics hardware
vendor, driver, and operating system.

Limitations. Rendering performance becomes poor for
dense fields full of very detailed and filigree structures,
such as blades of grass. Sphere tracing forfeits its effi-
ciency when marching through these areas. However,
indirect visualization techniques struggle with these
cases as well, since they require unreasonably high-
resolution samplings to remain artifact-free.

Currently, our modeling environment is unable to
provide a convenient interface for sculpting. This is
clearly the domain where flexible explicit representa-
tions, e.g., based on voxels or meshes, perform best.
However, previous work discussed in Section 2 shows
that it is of course possible to sculpt convincing and so-
phisticated objects with implicit surfaces.

7. Conclusion and Future Work

We demonstrated how compositions of signed dis-
tance functions can be constructed and used to implic-
itly represent complex objects and whole scenes. An in-
tuitive and fully functional modeling environment based
on SDFs was presented, enabling artists to create ap-
pealing scenes without having to deal with the novel
underlying data structures.

We showed that interactive modeling and rendering
based on SDFs is possible. Neither intermediate steps
for indirect visualization, nor explicit discrete grids
are required, avoiding geometric aliasing. Instead, the

scene is directly rendered using sphere tracing at inter-
active frame rates.

A tempting future development is to provide a sophis-
ticated interface for seamlessly merging meshes with
implicit surfaces and explicit deformation tools. This
allows for accessing the individual benefits of each
modeling approach, while compensating for their par-
ticular drawbacks. If, however, it is possible to describe
everything procedurally and implicitly, everything turns
out to be continuous and smooth, allowing for arbitrary,
detailed zooms into the scene.

We use manipulators well known from traditional
mesh modeling. They fit smoothly into our environ-
ment, but it should also be investigated, whether a vari-
ety of novel, adapted manipulators exists, that are much
more applicable to implicit surfaces.

References
[1] Bloomenthal, J., Shoemake, K., July 1991. Convolution sur-

faces. SIGGRAPH Comput. Graph. 25, 251–256.
[2] Evans, A., 2006. Fast approximations for global illumination on

dynamic scenes. In: SIGGRAPH ’06: ACM SIGGRAPH 2006
Courses. ACM, New York, NY, USA, pp. 153–171.

[3] Frisken, S. F., Perry, R. N., Rockwood, A. P., Jones, T. R., 2000.
Adaptively sampled distance fields: a general representation of
shape for computer graphics. In: Proceedings of the 27th annual
conference on Computer graphics and interactive techniques.
SIGGRAPH ’00. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, pp. 249–254.

[4] Hart, J. C., 1996. Sphere tracing: A geometric method for the
antialiased ray tracing of implicit surfaces. The Visual Computer
12, 527–545.

[5] Hua, J., Qin, H., September 2004. Haptics-based dynamic im-
plicit solid modeling. IEEE Transactions on Visualization and
Computer Graphics 10, 574–586.

[6] Loop, C., Blinn, J., July 2006. Real-time gpu rendering of piece-
wise algebraic surfaces. ACM Trans. Graph. 25, 664–670.

[7] Lorensen, W. E., Cline, H. E., August 1987. Marching cubes: A
high resolution 3d surface construction algorithm. SIGGRAPH
Comput. Graph. 21, 163–169.

[8] Luft, T., Colditz, C., Deussen, O., 2006. Image enhancement by
unsharp masking the depth buffer. ACM Transactions on Graph-
ics 25 (3), 1206–1213.

[9] Martinez Esturo, J., Rössl, C., Theisel, H., 2010. Continuous de-
formations of implicit surfaces. In: Proceedings of Vision, Mod-
eling, and Visualization (VMV 2010).

[10] Museth, K., Breen, D. E., Whitaker, R. T., Barr, A. H., July
2002. Level set surface editing operators. ACM Trans. Graph.
21, 330–338.

[11] Nealen, A., Igarashi, T., Sorkine, O., Alexa, M., 2007. Fiber-
Mesh: Designing freeform surfaces with 3D curves. ACM
Transactions on Graphics 26 (3).

[12] Osher, S., Sethian, J. A., November 1988. Fronts propagating
with curvature-dependent speed: algorithms based on hamilton-
jacobi formulations. J. Comput. Phys. 79, 12–49.

[13] Osher, S. J., Fedkiw, R. P., October 2002. Level Set Methods
and Dynamic Implicit Surfaces, 1st Edition. Springer.

[14] Parker, S., Shirley, P., Smits, B., 1998. Single sample soft shad-
ows. Tech. Rep. UUCS-98-019, Computer Science Department,
University of Utah.

9

Figure 10: The user interface of our interactive modeling environment. It features a main modeling area and an
interface to the scene graph on the right. A work image is displayed to visualize the amount of sphere tracing steps.
In addition to modeling using visual manipulators, the user can freely edit the generated fragment shader source to
define sophisticated surfaces and transformations.

[15] Perlin, K., Hoffert, E. M., July 1989. Hypertexture. SIGGRAPH
Comput. Graph. 23, 253–262.

[16] Richard, V. A., Cartwright, R., Fausett, E., Ossipov, A., Pasko,
E., Savchenko, V., 1999. Hyperfun project: a framework for col-
laborative multidimensional f-rep modeling. In: Proceedings of
Implicit Surfaces ’99, Eurographics/ACM SIGGRAPH Work-
shop. pp. 59–69.

[17] Rineau, L., Yvinec, M., 2010. 3D surface mesh generation. In:
CGAL User and Reference Manual, 3.6 Edition. CGAL Edito-
rial Board.

[18] Ritschel, T., Smith, K., Ihrke, M., Grosch, T., Myszkowski, K.,
Seidel, H.-P., 2008. 3D Unsharp Masking for Scene Coherent
Enhancement. ACM Trans. Graph. (Proc. of SIGGRAPH 2008)
27 (3).

[19] Schmidt, R., Wyvill, B., Sousa, M. C., Jorge, J. A., 2005.
Shapeshop: Sketch-based solid modeling with blobtrees. In:
Proceedings of SBIM ’05. pp. 53–62.

[20] Sederberg, T. W., 1985. Piecewise algebraic surface patches.
Computer Aided Geometric Design 2 (1-3), 53 – 59.

[21] Singh, K., Eugene, F., 1998. Wires: a geometric deformation
technique. In: Proceedings of the 25th annual conference on

Computer graphics and interactive techniques. SIGGRAPH ’98.
ACM, New York, NY, USA, pp. 405–414.

[22] Sugihara, M., Wyvill, B., Schmidt, R., 2010. WarpCurves: A
tool for explicit manipulation of implicit surfaces. Computers &
Graphics 34 (3), 282–291, Shape Modeling International 2010.

[23] Turk, G., O’Brien, J. F., 1999. Shape transformation using vari-
ational implicit functions. In: Proceedings of the 26th annual
conference on Computer graphics and interactive techniques.
SIGGRAPH ’99. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, pp. 335–342.

[24] Turk, G., O’Brien, J. F., October 2002. Modelling with implicit
surfaces that interpolate. ACM Trans. Graph. 21, 855–873.

[25] Wyvill, B., Galin, E., Guy, A., June 1999. Extending The CSG
Tree. Warping, Blending and Boolean Operations in an Implicit
Surface Modeling System. Computer Graphics Forum 18 (2),
149–158.

10

